Analysis of the applicability and results of swarm intelligence tools for the positioning of Energy Storage Systems
dc.contributor.author | Divasson Jaureguibarria, Asier | |
dc.contributor.author | Aranzabal Santamaria, Itxaso | |
dc.contributor.author | Bedialauneta Landaribar, Miren Terese | |
dc.contributor.author | Castillo Aguirre, Paula | |
dc.date.accessioned | 2025-02-25T11:47:18Z | |
dc.date.available | 2025-02-25T11:47:18Z | |
dc.date.issued | 2024-12 | |
dc.date.updated | 2025-02-25T11:47:18Z | |
dc.description.abstract | The integration of renewable energy is transforming traditional energy systems, blurring the distinction between producers and consumers and shifting towards a distributed grid network. This change demands innovative approaches to optimize Energy Storage Systems (ESS) and manage grid incidents efficiently, all without significant infrastructural changes. While optimization algorithms like Swarm Intelligence are gaining traction, critical aspects, such as worst-case scenario analysis in distribution networks, remain underexplored. This study addresses this gap by applying stochastic optimization techniques to determine the optimal placement and capacity of ESS in a medium voltage radial distribution system, using the IEEE 33-bus model. The findings highlight the importance of considering worst-case scenarios, offering a balanced evaluation of current methodologies. This research provides valuable insights for improving system flexibility and resilience, contributing to more effective and practical energy optimization strategies in real-world applications. | en |
dc.description.sponsorship | This work is financially supported by the Basque Government,Spain under Grant IT1647-22 (ELEKTRIKER research group), by theMinisterio de Ciencia e Innovación, the Agencia Estatal de Inves-tigación and the European Union under Grant TED2021-129930A-I00 funded by MCIN/AEI/10.13039/501100011033 and by the ‘‘Euro-pean Union NextGenerationEU/PRTR’’ and under the Grant PID2021-125881OB-I00 funded by MICIU/AEI/10.13039/501100011033 and byERDF/EU | en |
dc.identifier.citation | Divasson-J, A., Santamaria, I. A., Landaribar, M. T. B., & Aguirre, P. C. (2024). Analysis of the applicability and results of swarm intelligence tools for the positioning of Energy Storage Systems. International Journal of Electrical Power and Energy Systems, 163. https://doi.org/10.1016/J.IJEPES.2024.110343 | |
dc.identifier.doi | 10.1016/J.IJEPES.2024.110343 | |
dc.identifier.issn | 0142-0615 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14454/2374 | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.rights | © 2024 The Author(s) | |
dc.subject.other | Distribution systems | |
dc.subject.other | Electrical systems | |
dc.subject.other | Energy storage systems | |
dc.subject.other | Optimization | |
dc.subject.other | Stochastic algorithms | |
dc.title | Analysis of the applicability and results of swarm intelligence tools for the positioning of Energy Storage Systems | en |
dc.type | journal article | |
dcterms.accessRights | open access | |
oaire.citation.title | International Journal of Electrical Power and Energy Systems | |
oaire.citation.volume | 163 | |
oaire.licenseCondition | https://creativecommons.org/licenses/by/4.0/ | |
oaire.version | VoR |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- divasson_analysis_2024.pdf
- Tamaño:
- 3.28 MB
- Formato:
- Adobe Portable Document Format