Algorithm development for night charging electric vehicles optimization in big data applications

dc.contributor.authorÁlvaro Hermana, Roberto
dc.contributor.authorFraile Ardanuy, Jesús
dc.contributor.authorMerino, Julia
dc.date.accessioned2026-01-21T16:30:59Z
dc.date.available2026-01-21T16:30:59Z
dc.date.issued2017
dc.date.updated2026-01-21T16:30:59Z
dc.descriptionPonencia presentada en el 7th International Conference on Sustainable Energy Information Technology (SEIT-17), celebrada en Madeira, Portugal entre el 16 y el 19 de mayo de 2017.es
dc.description.abstractIn this paper a night charging method that optimizes the recharging process of electric vehicles (EVs) depending on hourly energy price in a peer to peer (P2P) energy trading system is presented. This algorithm determines how much energy should be recharged in the battery of each EV and the corresponding time slot to do it, avoiding the discontinuities in the charging process and considering the users' personal mobility constraints.en
dc.identifier.citationAlvaro-Hermana, R., Fraile-Ardanuy, J., & Merino, J. (2017). Algorithm development for night charging electric vehicles optimization in big data applications. Procedia Computer Science, 109, 793-800. https://doi.org/10.1016/J.PROCS.2017.05.329
dc.identifier.doi10.1016/J.PROCS.2017.05.329
dc.identifier.eissn1877-0509
dc.identifier.urihttps://hdl.handle.net/20.500.14454/4793
dc.language.isoeng
dc.publisherElsevier B.V.
dc.rights© 2017 The Authors
dc.subject.otherElectric vehicles
dc.subject.otherOptimization
dc.subject.otherPeer-to-peer
dc.titleAlgorithm development for night charging electric vehicles optimization in big data applicationsen
dc.typeconference paper
dcterms.accessRightsopen access
oaire.citation.endPage800
oaire.citation.startPage793
oaire.citation.titleProcedia Computer Science
oaire.citation.volume109
oaire.licenseConditionhttps://creativecommons.org/licenses/by-nc-nd/4.0/
oaire.versionVoR
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
alvaro_algorithm_2017.pdf
Tamaño:
621.01 KB
Formato:
Adobe Portable Document Format
Colecciones