Autoencoder-enhanced clustering: a dimensionality reduction approach to financial time series

Cargando...
Miniatura
Fecha
2024-02-05
Título de la revista
ISSN de la revista
Título del volumen
Editor
Institute of Electrical and Electronics Engineers Inc.
google-scholar
Resumen
While Machine Learning significantly boosts the performance of predictive models, its efficacy varies across different data dimensions. It is essential to cluster time series data of similar characteristics, particularly in the financial sector. However, clustering financial time series data poses considerable challenges due to the market's inherent complexity and multidimensionality. To address these issues, our study introduces a novel clustering framework that leverages autoencoders for a compressed yet informative representation of financial time series. We rigorously evaluate our approach through multiple dimensionality reduction and clustering algorithms, applying it to key financial indices, including IBEX-35, CAC-40, DAX-30, S&P 500, and FTSE 100. Our findings consistently demonstrate that incorporating autoencoders significantly enhances the granularity and quality of clustering, effectively isolating distinct categories of financial time series. Our findings carry significant ramifications for the financial industry. By refining clustering methodologies, we set the stage for increasingly accurate financial predictive models, offering valuable insights for optimizing investment strategies and enhancing risk management.
Palabras clave
Clustering methods
Data compression
Financial data processing
Neural network applications
Time series
Descripción
Materias
Cita
Cortes, D. G., Onieva, E., Lopez, I. P., Trinchera, L., & Wu, J. (2024). Autoencoder-enhanced clustering: a dimensionality reduction approach to financial time series. IEEE Access, 12, 16999-17009. https://doi.org/10.1109/ACCESS.2024.3359413
Colecciones