An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering
No hay miniatura disponible
Fecha
2021-04
Autores
Ramos Soto, Oscar
Rodríguez Esparza, Erick
Balderas Mata, Sandra Eloisa
Oliva, Diego
Hassanien, Aboul Ella
Meleppat, Ratheesh K.
Zawadzki, Robert J.
Título de la revista
ISSN de la revista
Título del volumen
Editor
Elsevier Ireland Ltd
Resumen
Background and objective: Automatic segmentation of retinal blood vessels makes a major contribution in CADx of various ophthalmic and cardiovascular diseases. A procedure to segment thin and thick retinal vessels is essential for medical analysis and diagnosis of related diseases. In this article, a novel methodology for robust vessel segmentation is proposed, handling the existing challenges presented in the literature. Methods: The proposed methodology consists of three stages, pre-processing, main processing, and post-processing. The first stage consists of applying filters for image smoothing. The main processing stage is divided into two configurations, the first to segment thick vessels through the new optimized top-hat, homomorphic filtering, and median filter. Then, the second configuration is used to segment thin vessels using the proposed optimized top-hat, homomorphic filtering, matched filter, and segmentation using the MCET-HHO multilevel algorithm. Finally, morphological image operations are carried out in the post-processing stage. Results: The proposed approach was assessed by using two publicly available databases (DRIVE and STARE) through three performance metrics: specificity, sensitivity, and accuracy. Analyzing the obtained results, an average of 0.9860, 0.7578 and 0.9667 were respectively achieved for DRIVE dataset and 0.9836, 0.7474 and 0.9580 for STARE dataset. Conclusions: The numerical results obtained by the proposed technique, achieve competitive average values with the up-to-date techniques. The proposed approach outperform all leading unsupervised methods discussed in terms of specificity and accuracy. In addition, it outperforms most of the state-of-the-art supervised methods without the computational cost associated with these algorithms. Detailed visual analysis has shown that a more precise segmentation of thin vessels was possible with the proposed approach when compared with other procedures.
Palabras clave
Homomorphic filtering
MCET-HHO algorithm
Optimized top-hat
Retinal blood vessel segmentation
MCET-HHO algorithm
Optimized top-hat
Retinal blood vessel segmentation
Descripción
Materias
Cita
Ramos-Soto, O., Rodríguez-Esparza, E., Balderas-Mata, S. E., Oliva, D., Hassanien, A. E., Meleppat, R. K., & Zawadzki, R. J. (2021). An efficient retinal blood vessel segmentation in eye fundus images by using optimized top-hat and homomorphic filtering. Computer Methods and Programs in Biomedicine, 201. https://doi.org/10.1016/J.CMPB.2021.105949
