Simplified model for the short-term forecasting of heat loads in buildings
| dc.contributor.author | Eguizabal, Markel | |
| dc.contributor.author | Garay Martínez, Roberto | |
| dc.contributor.author | Flores-Abascal, Iván | |
| dc.date.accessioned | 2025-07-22T11:21:08Z | |
| dc.date.available | 2025-07-22T11:21:08Z | |
| dc.date.issued | 2022-10-25 | |
| dc.date.updated | 2025-07-22T11:21:08Z | |
| dc.description.abstract | A data-driven model is used to predict one-hour ahead heat loads based on present and recent history of weather and heat loads. A computationally inexpensive method is built to deliver load forecasting based on existing data quality and resolution from smart meters. Optimal model formulation is discussed and optimized at 4-hour historical values. The model is trained and tested against synthetic data from a building energy simulation, resulting in absolute error <4% and R2 values in the range of 0.92 to 0.94. | en |
| dc.identifier.citation | Eguizabal, M., Garay-Martinez, R., & Flores-Abascal, I. (2022). Simplified model for the short-term forecasting of heat loads in buildings. Energy Reports, 8, 79-85. https://doi.org/10.1016/J.EGYR.2022.10.224 | |
| dc.identifier.doi | 10.1016/J.EGYR.2022.10.224 | |
| dc.identifier.eissn | 2352-4847 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14454/3267 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier Ltd | |
| dc.rights | © 2022 The Author(s) | |
| dc.subject.other | Building | |
| dc.subject.other | Heating demand | |
| dc.subject.other | Lagged value | |
| dc.subject.other | Regression model | |
| dc.title | Simplified model for the short-term forecasting of heat loads in buildings | en |
| dc.type | journal article | |
| dcterms.accessRights | open access | |
| oaire.citation.endPage | 85 | |
| oaire.citation.startPage | 79 | |
| oaire.citation.title | Energy Reports | |
| oaire.citation.volume | 8 | |
| oaire.licenseCondition | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| oaire.version | VoR |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- eguizabal_simplified_2022.pdf
- Tamaño:
- 1.25 MB
- Formato:
- Adobe Portable Document Format