Examinando por Autor "Cejudo Taramona, Ander"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem Population-level analysis of personalized food recommendation using reinforcement learning(Multidisciplinary Digital Publishing Institute (MDPI), 2025-11-03) Tellechea Belzunce, Yone; Arrojo Magro, Markel; Cejudo Taramona, Ander; Martín Andonegui, CristinaThis paper introduces an innovative methodology for optimizing recommendation strategies across different populations within the food industry. While previous approaches to recommending courses have overlooked cultural and age-based preferences, our work demonstrates how understanding these differences can significantly enhance the attractiveness for consumers and create new opportunities for marketing. By simulating diverse populations using a fuzzy logic approach, based on individual characteristics such as age, gender, geographical area, and city size, the study evaluates how recommendation algorithms perform within a generated menu database. Results show that algorithms like State–Action–Reward–State–Action (SARSA), multi-armed bandit (MAB), and Deep-Q Network (DQN) exhibit varying levels of efficiency depending on the population. Notably, the DQN improves accumulated reward over a random recommender by 71.60% for “Foodies”, 65.02% for “Veggies”, 63.46% for “Spanish”, and 8.89% for “Seniors”, while MAB achieves similar performance with fewer resources. Statistically significant differences (p < 0.005) are found in the performance of the DQN between populations, with large effect sizes according to Cliff’s delta. These findings highlight recommender systems as an opportunity to navigate market demand, optimize supply chains, and reduce food waste. A better understanding of public preferences enables more effective alignment of supply and demand across the entire food supply chain. As a conclusion, while the DQN effectively captures target group preferences, the optimum recommendation strategy should be chosen by balancing algorithmic performance, computational efficiency, and the specific requirements of the food sector.Ítem Smart home-assisted anomaly detection system for older adults: a deep learning approach with a comprehensive set of daily activities(Springer Science and Business Media Deutschland GmbH, 2025-01-31) Cejudo Taramona, Ander; Beristain Iraola, Andoni; Almeida, Aitor; Rebescher, Kristin; Martín Andonegui, Cristina; Macía, IvánSmart homes have the potential to enable remote monitoring of the health and well-being of older adults, leading to improved health outcomes and increased independence. However, current approaches only consider a limited set of daily activities and do not combine data from individuals. In this work, we propose the use of deep learning techniques to model behavior at the population level and detect significant deviations (i.e., anomalies) while taking into account the whole set of daily activities (41). We detect and visualize daily routine patterns, train a set of recurrent neural networks for behavior modelling with next-day prediction, and model errors with a normal distribution to identify significant deviations while considering the temporal component. Clustering of daily routines achieves a silhouette score of 0.18 and the best model obtains a mean squared error in next day routine prediction of 4.38%. The mean number of deviated activities for the anomalies in the train and test set are 3.6 and 3.0, respectively, with more than 60% of anomalies involving three or more deviated activities in the test set. The methodology is scalable and can incorporate additional activities into the analysis.