Examinando por Autor "Zahia, Sofia"
Mostrando 1 - 4 de 4
Resultados por página
Opciones de ordenación
Ítem A comparative study between scanning devices for 3D printing of personalized ostomy patches(MDPI, 2022-01-12) Zahia, Sofia; García-Zapirain, Begoña; Anakabe, Jon ; Páez Orue-Echevarría, Joan Ander; Bastidas-Jossa, Óscar; Loizate Totoricagüena, AlbertoThis papers presents a comparative study of three different 3D scanning modalities to acquire 3D meshes of stoma barrier rings from ostomized patients. Computerized Tomography and Structured light scanning methods were the digitization technologies studied in this research. Among the Structured Light systems, the Go!Scan 20 and the Structure Sensor were chosen as the handheld 3D scanners. Nineteen ostomized patients took part in this study, starting from the 3D scans acquisition until the printed ostomy patches validation. 3D mesh processing, mesh generation and 3D mesh comparison was carried out using commercial softwares. The results of the presented study show that the Structure Sensor, which is the low cost structured light 3D sensor, has a great potential for such applications. This study also discusses the benefits and reliability of low-cost structured light systems.Ítem Dyslexia detection using 3D convolutional neural networks and functional magnetic resonance imaging(Elsevier Ireland Ltd, 2020-12) Zahia, Sofia; García-Zapirain, Begoña; Saralegui, Ibone; Fernandez-Ruanova, BegoñaBackground and Objectives: Dyslexia is a disorder of neurological origin which affects the learning of those who suffer from it, mainly children, and causes difficulty in reading and writing. When undiagnosed, dyslexia leads to intimidation and frustration of the affected children and also of their family circles. In case no early intervention is given, children may reach high school with serious achievement gaps. Hence, early detection and intervention services for dyslexic students are highly important and recommended in order to support children in developing a positive self-esteem and reaching their maximum academic capacities. This paper presents a new approach for automatic recognition of children with dyslexia using functional magnetic resonance Imaging. Methods: Our proposed system is composed of a sequence of preprocessing steps to retrieve the brain activation areas during three different reading tasks. Conversion to Nifti volumes, adjustment of head motion, normalization and smoothing transformations were performed on the fMRI scans in order to bring all the subject brains into one single model which will enable voxels comparison between each subject. Subsequently, using Statistical Parametric Maps (SPMs), a total of 165 3D volumes containing brain activation of 55 children were created. The classification of these volumes was handled using three parallel 3D Convolutional Neural Network (3D CNN), each corresponding to a brain activation during one reading task, and concatenated in the last two dense layers, forming a single architecture devoted to performing optimized detection of dyslexic brain activation. Additionally, we used 4-fold cross validation method in order to assess the generalizability of our model and control overfitting. Results: Our approach has achieved an overall average classification accuracy of 72.73%, sensitivity of 75%, specificity of 71.43%, precision of 60% and an F1-score of 67% in dyslexia detection. Conclusions: The proposed system has demonstrated that the recognition of dyslexic children is feasible using deep learning and functional magnetic resonance Imaging when performing phonological and orthographic reading tasks.Ítem Predicting physical exercise adherence in fitness apps using a deep learning approach(MDPI, 2021-10-14) Bastidas-Jossa, Óscar; Zahia, Sofia; Fuente Vidal, Andrea; Sánchez Férez, Néstor; Roda Noguera, Oriol; Montane, Joel; García-Zapirain, BegoñaThe use of mobile fitness apps has been on the rise for the last decade and especially during the worldwide SARS-CoV-2 pandemic, which led to the closure of gyms and to reduced outdoor mobility. Fitness apps constitute a promising means for promoting more active lifestyles, although their attrition rates are remarkable and adherence to their training plans remains a challenge for developers. The aim of this project was to design an automatic classification of users into adherent and non-adherent, based on their training behavior in the first three months of app usage, for which purpose we proposed an ensemble of regression models to predict their behaviour (adherence) in the fourth month. The study was conducted using data from a total of 246 Mammoth Hunters Fitness app users. Firstly, pre-processing and clustering steps were taken in order to prepare the data and to categorize users into similar groups, taking into account the first 90 days of workout sessions. Then, an ensemble approach for regression models was used to predict user training behaviour during the fourth month, which were trained with users belonging to the same cluster. This was used to reach a conclusion regarding their adherence status, via an approach that combined affinity propagation (AP) clustering algorithm, followed by the long short-term memory (LSTM), rendering the best results (87% accuracy and 85% F1_score). This study illustrates the suggested the capacity of the system to anticipate future adherence or non-adherence, potentially opening the door to fitness app creators to pursue advanced measures aimed at reducing app attrition.Ítem Pressure injury image analysis with machine learning techniques: a systematic review on previous and possible future methods(Elsevier B.V., 2020-01) Zahia, Sofia; García-Zapirain, Begoña; Sevillano, Xavier; González, Alejandro; Kim, Paul J.; Elmaghraby, Adel SaidPressure injuries represent a tremendous healthcare challenge in many nations. Elderly and disabled people are the most affected by this fast growing disease. Hence, an accurate diagnosis of pressure injuries is paramount for efficient treatment. The characteristics of these wounds are crucial indicators for the progress of the healing. While invasive methods to retrieve information are not only painful to the patients but may also increase the risk of infections, non-invasive techniques by means of imaging systems provide a better monitoring of the wound healing processes without causing any harm to the patients. These systems should include an accurate segmentation of the wound, the classification of its tissue types, the metrics including the diameter, area and volume, as well as the healing evaluation. Therefore, the aim of this survey is to provide the reader with an overview of imaging techniques for the analysis and monitoring of pressure injuries as an aid to their diagnosis, and proof of the efficiency of Deep Learning to overcome this problem and even outperform the previous methods. In this paper, 114 out of 199 papers retrieved from 8 databases have been analyzed, including also contributions on chronic wounds and skin lesions.