Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Vignau Arsuaga, Laura"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Pharmacokinetic evaluation of new drugs using a multi-labelling approach and PET imaging: application to a drug candidate with potential application in neuromuscular disorders
    (MDPI, 2023-01-18) Passannante, Rossana; Gómez Vallejo, Vanessa; Sagartzazu Aizpurua, Maialen; Vignau Arsuaga, Laura; Marco Moreno, Pablo; Aldanondo Aristizabal, Garazi ; Vallejo Illarramendi, Ainara; Aguiar Fernández, Pablo; Cossío, Unai; Martín, Abraham; Bergare, Jonas; Kingston, Lee; Elmore, Charles S.; Morcillo Alonso, Miguel Ángel ; Ferrón, Pablo; Aizpurua Iparraguirre, Jesus Mari ; Llop, Jordi
    Background and objective: The determination of pharmacokinetic properties of new chemical entities is a key step in the process of drug development. Positron emission tomography (PET) is an ideal technique to obtain both biodistribution and pharmacokinetic parameters of new compounds over a wide range of chemical modalities. Here, we use a multi-radionuclide/multi-position labelling approach to investigate distribution, elimination, and metabolism of a triazole-based FKBP12 ligand (AHK2) with potential application in neuromuscular disorders. Methods: Target engagement and stabilizing capacity of the drug candidate (AHK2) towards FKBP12-RyR was evaluated using competitive ligand binding and proximity ligation assays, respectively. Subsequently, AHK2 was labelled either with the positron emitter carbon-11 (11C) via 11C-methylation to yield both [11C]AHK2.1 and [11C]AHK2.2, or by palladium-catalysed reduction of the corresponding 5-iodotriazole derivative using 3H gas to yield [3H]AHK2. Metabolism was first investigated in vitro using liver microsomes. PET imaging studies in rats after intravenous (IV) administration at different doses (1 µg/Kg and 5 mg/Kg) were combined with determination of arterial blood time-activity curves (TACs) and analysis of plasma samples by high performance liquid chromatography (HPLC) to quantify radioactive metabolites. Arterial TACs were obtained in continuous mode by using an in-house developed system that enables extracorporeal blood circulation and continuous measurement of radioactivity in the blood. Pharmacokinetic parameters were determined by non-compartmental modelling of the TACs. Results: In vitro studies indicate that AHK2 binds to FKBP12 at the rapamycin-binding pocket, presenting activity as a FKBP12/RyR stabilizer. [11C]AHK2.1, [11C]AHK2.2 and [3H]AHK2 could be obtained in overall non-decay corrected radiochemical yields of 14 ± 2%, 15 ± 2% and 0.05%, respectively. Molar activities were 60–110 GBq/µmol, 68–122 GBq/µmol and 0.4–0.5 GBq/μmol, respectively. In vitro results showed that oxidation of the thioether group into sulfoxide, demethylation of the CH3O-Ar residue and demethylation of –N(CH3)2 were the main metabolic pathways. Fast metabolism was observed in vivo. Pharmacokinetic parameters obtained from metabolite-corrected arterial blood TACs showed a short half-life (12.6 ± 3.3 min). Dynamic PET imaging showed elimination via urine when [11C]AHK2.2 was administered, probably reflecting the biodistribution of [11C]methanol as the major metabolite. Contrarily, accumulation in the gastrointestinal track was observed after administration of [11C]AKH2.1. Conclusions: AHK2 binds to FKBP12 at the rapamycin-binding pocket, presenting activity as a FKBP12/RyR stabilizer. Studies performed with the 3H- and 11C-labelled FKBP12/RyR stabilizer AHK2 confirm fast blood clearance, linear pharmacokinetics and rapid metabolism involving oxidation of the sulfide and amine moieties and oxidative demethylation of the CH3-O-Ar and tertiary amine groups as the main pathways. PET studies suggest that knowledge about metabolic pathways is paramount to interpret images.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias