Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Saikia, Surajit"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Gesture-based human machine interaction using RCNNs in limited computation power devices
    (NLM (Medline), 2021-12-08) Tellaeche Iglesias, Alberto ; Fidalgo Astorquia, Ignacio ; Vazquez, Juan-Ignacio ; Saikia, Surajit
    The use of gestures is one of the main forms of human machine interaction (HMI) in many fields, from advanced robotics industrial setups, to multimedia devices at home. Almost every gesture detection system uses computer vision as the fundamental technology, with the already well-known problems of image processing: changes in lighting conditions, partial occlusions, variations in color, among others. To solve all these potential issues, deep learning techniques have been proven to be very effective. This research proposes a hand gesture recognition system based on convolutional neural networks and color images that is robust against environmental variations, has a real time performance in embedded systems, and solves the principal problems presented in the previous paragraph. A new CNN network has been specifically designed with a small architecture in terms of number of layers and total number of neurons to be used in computationally limited devices. The obtained results achieve a percentage of success of 96.92% on average, a better score than those obtained by previous algorithms discussed in the state of the art.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias