Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Pikatza Huerga, Amaia"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • No hay miniatura disponible
    Ítem
    Analysing the impact of images and text for predicting human creativity through encoders
    (Science and Technology Publications, Lda, 2025) Pikatza Huerga, Amaia; Matanzas de Luis, Pablo; Fernandez De Retana Uribe, Miguel; Peña Lasa, Javier; Zulaika Zurimendi, Unai; Almeida, Aitor
    This study explores the application of multimodal machine learning techniques to evaluate the originality and complexity of drawings. Traditional approaches in creativity assessment have primarily focused on visual analysis, often neglecting the potential insights derived from accompanying textual descriptions. The research assesses four target features: drawings’ originality, flexibility and elaboration level, and titles’ creativity, all labelled by expert psychologists. The research compares different image encoding and text embeddings to examine the effectiveness and impact of individual and combined modalities. The results indicate that incorporating textual information enhances the predictive accuracy for all features, suggesting that text provides valuable contextual insights that images alone may overlook. This work demonstrates the importance of a multimodal approach in creativity assessment, paving the way for more comprehensive and nuanced evaluations of artistic expression.
  • Cargando...
    Miniatura
    Ítem
    Predictive assessment of eating disorder risk and recovery: uncovering the effectiveness of questionnaires and influencing characteristics
    (Elsevier B.V., 2025) Pikatza Huerga, Amaia; Las Hayas Rodríguez, Carlota; Zulaika Zurimendi, Unai; Almeida, Aitor
    This study aims to assess the predictive capabilities of various questionnaires in determining the risk of Eating Disorders (ED) and predicting the level of recovery among individuals. Employing machine learning models and diverse datasets, the research focuses on understanding the effectiveness of different questionnaires in providing insights into ED symptoms and recovery outcomes. Additionally, the study seeks to identify the characteristics that significantly influence the recovery process. The investigation aims to contribute valuable information to enhance the diagnostic and monitoring tools used in the field of mental health, particularly concerning ED
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias