Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Olivares, Isabel"

Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Classification of SARS-CoV-2 sequences as recombinants via a pre-trained CNN and identification of a mathematical signature relative to recombinant feature at Spike, via interpretability
    (Public Library of Science, 2024-08) Guerrero Tamayo, Ana; Sanz Urquijo, Borja; Olivares, Isabel; Moragues Tosantos, María Dolores; Casado, Concepción; Pastor López, Iker
    The global impact of the SARS-CoV-2 pandemic has underscored the need for a deeper understanding of viral evolution to anticipate new viruses or variants. Genetic recombination is a fundamental mechanism in viral evolution, yet it remains poorly understood. In this study, we conducted a comprehensive research on the genetic regions associated with genetic recombination features in SARS-CoV-2. With this aim, we implemented a two-phase transfer learning approach using genomic spectrograms of complete SARS-CoV-2 sequences. In the first phase, we utilized a pre-trained VGG-16 model with genomic spectrograms of HIV-1, and in the second phase, we applied HIV-1 VGG-16 model to SARS-CoV-2 spectrograms. The identification of key recombination hot zones was achieved using the Grad-CAM interpretability tool, and the results were analyzed by mathematical and image processing techniques. Our findings unequivocally identify the SARS-CoV-2 Spike protein (S protein) as the pivotal region in the genetic recombination feature. For non-recombinant sequences, the relevant frequencies clustered around 1/6 and 1/12. In recombinant sequences, the sharp prominence of the main hot zone in the Spike protein prominently indicated a frequency of 1/ 6. These findings suggest that in the arithmetic series, every 6 nucleotides (two triplets) in S may encode crucial information, potentially concealing essential details about viral characteristics, in this case, recombinant feature of a SARS-CoV-2 genetic sequence. This insight further underscores the potential presence of multifaceted information within the genome, including mathematical signatures that define an organism’s unique attributes.
  • Cargando...
    Miniatura
    Ítem
    Discovering mathematical patterns behind HIV-1 genetic recombination: a new methodology to identify viral features
    (Institute of Electrical and Electronics Engineers Inc., 2023-09-04) Guerrero Tamayo, Ana ; Sanz Urquijo, Borja ; Casado, Concepción ; Moragues Tosantos, María Dolores ; Olivares, Isabel ; Pastor López, Iker
    In this article, we introduce a novel methodology for characterizing viral genetic features: the Unified Methodology of recombinant virus Identification (UMI). Our methodology converts genomic sequences into spectrograms, applies transfer learning using a pre-trained Convolutional Neural Network (CNN), and employs interpretability tools to identify the genomic regions relevant for characterizing a viral sequence as recombinant. The UMI methodology does not necessitate multiple sequence alignment or manual adjustments. As a result, it operates much faster, has low computational demands, and is capable of handling substantial amounts of data. To validate this, we applied UMI to one extensively studied and documented case: HIV-1 genetic recombination. We worked with all identified HIV-1 complete sequences (13554 sequences up to 2020), searching for mathematical patterns, signatures, that characterize an HIV-1 sequence as recombinant. CNN's hit rate (test accuracy) is 94%, with consistent and differentiated decision areas in each category. Using interpretability tools, we verified that the hot zones were similar for sequences of the same subtype and phylogenetic proximity. The leading areas for classifying a sequence as recombinant or non-recombinant are coincident with genomic regions that play a key role in genetic recombination processes. By applying UMI methodology we found that there is indeed a genome mathematical pattern that assesses an HIV-1 sequence as recombinant. In addition, we located its position. Considering expert knowledge, our results showed a substantial, robust and biologically-consistent hit rate. This type of solution can successfully guide the location and subsequent characterization of relevant areas, avoiding the heavy analysis of multiple sequence alignment and manual adjustments.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias