Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Mostafa, Salama A."

Mostrando 1 - 3 de 3
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    COVID-DeepNet: hybrid multimodal deep learning system for Improving COVID-19 pneumonia detection in chest X-ray images
    (Tech Science Press, 2021-02-05) Al-Waisy, Alaa S.; Mohammed, Mazin Abed ; Al-Fahdawi, Shumoos; Maashi, Mashael S. ; García-Zapirain, Begoña; Abdulkareem, Karrar Hameed ; Mostafa, Salama A.; Kumar, Nallapaneni Manoj; Le, Dac-Nhuong
    Coronavirus (COVID-19) epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide. This newly recognized virus is highly transmissible, and no clinically approved vaccine or antiviral medicine is currently available. Early diagnosis of infected patients through effective screening is needed to control the rapid spread of this virus. Chest radiography imaging is an effective diagnosis tool for COVID-19 virus and followup. Here, a novel hybrid multimodal deep learning system for identifying COVID-19 virus in chest X-ray (CX-R) images is developed and termed as the COVID-DeepNet system to aid expert radiologists in rapid and accurate image interpretation. First, Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Butterworth bandpass filter were applied to enhance the contrast and eliminate the noise in CX-R images, respectively. Results from two different deep learning approaches based on the incorporation of a deep belief network and a convolutional deep belief network trained from scratch using a large-scale dataset were then fused. Parallel architecture, which provides radiologists a high degree of confidence to distinguish healthy and COVID-19 infected people, was considered. The proposed COVID-DeepNet system can correctly and accurately diagnose patients with COVID-19 with a detection accuracy rate of 99.93%, sensitivity of 99.90%, specificity of 100%, precision of 100%, F1-score of 99.93%, MSE of 0.021%, and RMSE of 0.016% in a large-scale dataset. This system shows efficiency and accuracy and can be used in a real clinical center for the early diagnosis of COVID-19 virus and treatment follow-up with less than 3 s per image to make the final decision.
  • Cargando...
    Miniatura
    Ítem
    Innovative artificial intelligence approach for hearing-loss symptoms identification model using machine learning techniques
    (MDPI, 2021-05-12) Abd Ghani, Mohd Khanapi; Noma, Nasir G.; Mohammed, Mazin Abed; Abdulkareem, Karrar Hameed; García-Zapirain, Begoña ; Maashi, Mashael S.; Mostafa, Salama A.
    Physicians depend on their insight and experience and on a fundamentally indicative or symptomatic approach to decide on the possible ailment of a patient. However, numerous phases of problem identification and longer strategies can prompt a longer time for consulting and can subsequently cause other patients that require attention to wait for longer. This can bring about pressure and tension concerning those patients. In this study, we focus on developing a decision-support system for diagnosing the symptoms as a result of hearing loss. The model is implemented by utilizing machine learning techniques. The Frequent Pattern Growth (FP-Growth) algorithm is used as a feature transformation method and the multivariate Bernoulli naïve Bayes classification model as the classifier. To find the correlation that exists between the hearing thresholds and symptoms of hearing loss, the FP-Growth and association rule algorithms were first used to experiment with small sample and large sample datasets. The result of these two experiments showed the existence of this relationship, and that the performance of the hybrid of the FP-Growth and naïve Bayes algorithms in identifying hearing-loss symptoms was found to be efficient, with a very small error rate. The average accuracy rate and average error rate for the multivariate Bernoulli model with FP-Growth feature transformation, using five training sets, are 98.25% and 1.73%, respectively.
  • Cargando...
    Miniatura
    Ítem
    Novel crow swarm optimization algorithm and selection approach for optimal deep learning COVID-19 diagnostic model
    (Hindawi Limited, 2022-08-13) Mohammed, Mazin Abed; Al-Khateeb, Belal ; Yousif, Mohammed ; Mostafa, Salama A.; Kadry, Seifedine ; Abdulkareem, Karrar Hameed ; García-Zapirain, Begoña
    Due to the COVID-19 pandemic, computerized COVID-19 diagnosis studies are proliferating. The diversity of COVID-19 models raises the questions of which COVID-19 diagnostic model should be selected and which decision-makers of healthcare organizations should consider performance criteria. Because of this, a selection scheme is necessary to address all the above issues. This study proposes an integrated method for selecting the optimal deep learning model based on a novel crow swarm optimization algorithm for COVID-19 diagnosis. The crow swarm optimization is employed to find an optimal set of coefficients using a designed fitness function for evaluating the performance of the deep learning models. The crow swarm optimization is modified to obtain a good selected coefficient distribution by considering the best average fitness. We have utilized two datasets: the first dataset includes 746 computed tomography images, 349 of them are of confirmed COVID-19 cases and the other 397 are of healthy individuals, and the second dataset are composed of unimproved computed tomography images of the lung for 632 positive cases of COVID-19 with 15 trained and pretrained deep learning models with nine evaluation metrics are used to evaluate the developed methodology. Among the pretrained CNN and deep models using the first dataset, ResNet50 has an accuracy of 91.46% and a F1-score of 90.49%. For the first dataset, the ResNet50 algorithm is the optimal deep learning model selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5715.988 for COVID-19 computed tomography lung images case considered differential advancement. In contrast, the VGG16 algorithm is the optimal deep learning model is selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5758.791 for the second dataset. Overall, InceptionV3 had the lowest performance for both datasets. The proposed evaluation methodology is a helpful tool to assist healthcare managers in selecting and evaluating the optimal COVID-19 diagnosis models based on deep learning.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias