Examinando por Autor "Mohammed, Mazin Abed"
Mostrando 1 - 9 de 9
Resultados por página
Opciones de ordenación
Ítem COVID-DeepNet: hybrid multimodal deep learning system for Improving COVID-19 pneumonia detection in chest X-ray images(Tech Science Press, 2021-02-05) Al-Waisy, Alaa S.; Mohammed, Mazin Abed ; Al-Fahdawi, Shumoos; Maashi, Mashael S. ; García-Zapirain, Begoña; Abdulkareem, Karrar Hameed ; Mostafa, Salama A.; Kumar, Nallapaneni Manoj; Le, Dac-NhuongCoronavirus (COVID-19) epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide. This newly recognized virus is highly transmissible, and no clinically approved vaccine or antiviral medicine is currently available. Early diagnosis of infected patients through effective screening is needed to control the rapid spread of this virus. Chest radiography imaging is an effective diagnosis tool for COVID-19 virus and followup. Here, a novel hybrid multimodal deep learning system for identifying COVID-19 virus in chest X-ray (CX-R) images is developed and termed as the COVID-DeepNet system to aid expert radiologists in rapid and accurate image interpretation. First, Contrast-Limited Adaptive Histogram Equalization (CLAHE) and Butterworth bandpass filter were applied to enhance the contrast and eliminate the noise in CX-R images, respectively. Results from two different deep learning approaches based on the incorporation of a deep belief network and a convolutional deep belief network trained from scratch using a large-scale dataset were then fused. Parallel architecture, which provides radiologists a high degree of confidence to distinguish healthy and COVID-19 infected people, was considered. The proposed COVID-DeepNet system can correctly and accurately diagnose patients with COVID-19 with a detection accuracy rate of 99.93%, sensitivity of 99.90%, specificity of 100%, precision of 100%, F1-score of 99.93%, MSE of 0.021%, and RMSE of 0.016% in a large-scale dataset. This system shows efficiency and accuracy and can be used in a real clinical center for the early diagnosis of COVID-19 virus and treatment follow-up with less than 3 s per image to make the final decision.Ítem A deep learning-based diagnosis system for COVID-19 detection and pneumonia screening using CT imaging(MDPI, 2022-05-10) Mahmoudi, Ramzi; Benameur, Narjes ; Mabrouk, Rania; Mohammed, Mazin Abed; García-Zapirain, Begoña; Bedoui, Mohamed HédiSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global threat impacting the lives of millions of people worldwide. Automated detection of lung infections from Computed Tomography scans represents an excellent alternative; however, segmenting infected regions from CT slices encounters many challenges. Developing a diagnosis system based on deep learning techniques to detect and quantify COVID-19 infection and pneumonia screening using CT imaging. Contrast Limited Adaptive Histogram Equalization pre-processing method was used to remove the noise and intensity in homogeneity. Black slices were also removed to crop only the region of interest containing the lungs. A U-net architecture, based on CNN encoder and CNN decoder approaches, is then introduced for a fast and precise image segmentation to obtain the lung and infection segmentation models. For better estimation of skill on unseen data, a fourfold cross-validation as a resampling procedure has been used. A three-layered CNN architecture, with additional fully connected layers followed by a Softmax layer, was used for classification. Lung and infection volumes have been reconstructed to allow volume ratio computing and obtain infection rate. Starting with the 20 CT scan cases, data has been divided into 70% for the training dataset and 30% for the validation dataset. Experimental results demonstrated that the proposed system achieves a dice score of 0.98 and 0.91 for the lung and infection segmentation tasks, respectively, and an accuracy of 0.98 for the classification task. The proposed workflow aimed at obtaining good performances for the different system’s components, and at the same time, dealing with reduced datasets used for training.Ítem Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach(MDPI AG, 2021-01-11) Awan, Mazhar Javed ; Mohd Rahim, Mohd Shafry ; Salim, Naomie; Mohammed, Mazin Abed; García-Zapirain, Begoña; Abdulkareem, Karrar HameedThe most commonly injured ligament in the human body is an anterior cruciate ligament (ACL). ACL injury is standard among the football, basketball and soccer players. The study aims to detect anterior cruciate ligament injury in an early stage via efficient and thorough automatic magnetic resonance imaging without involving radiologists, through a deep learning method. The proposed approach in this paper used a customized 14 layers ResNet-14 architecture of convolutional neural network (CNN) with six different directions by using class balancing and data augmentation. The performance was evaluated using accuracy, sensitivity, specificity, precision and F1 score of our customized ResNet-14 deep learning architecture with hybrid class balancing and real-time data augmentation after 5-fold cross-validation, with results of 0.920%, 0.916%, 0.946%, 0.916% and 0.923%, respectively. For our proposed ResNet-14 CNN the average area under curves (AUCs) for healthy tear, partial tear and fully ruptured tear had results of 0.980%, 0.970%, and 0.999%, respectively. The proposing diagnostic results indicated that our model could be used to detect automatically and evaluate ACL injuries in athletes using the proposed deep-learning approach.Ítem Innovative artificial intelligence approach for hearing-loss symptoms identification model using machine learning techniques(MDPI, 2021-05-12) Abd Ghani, Mohd Khanapi; Noma, Nasir G.; Mohammed, Mazin Abed; Abdulkareem, Karrar Hameed; García-Zapirain, Begoña ; Maashi, Mashael S.; Mostafa, Salama A.Physicians depend on their insight and experience and on a fundamentally indicative or symptomatic approach to decide on the possible ailment of a patient. However, numerous phases of problem identification and longer strategies can prompt a longer time for consulting and can subsequently cause other patients that require attention to wait for longer. This can bring about pressure and tension concerning those patients. In this study, we focus on developing a decision-support system for diagnosing the symptoms as a result of hearing loss. The model is implemented by utilizing machine learning techniques. The Frequent Pattern Growth (FP-Growth) algorithm is used as a feature transformation method and the multivariate Bernoulli naïve Bayes classification model as the classifier. To find the correlation that exists between the hearing thresholds and symptoms of hearing loss, the FP-Growth and association rule algorithms were first used to experiment with small sample and large sample datasets. The result of these two experiments showed the existence of this relationship, and that the performance of the hybrid of the FP-Growth and naïve Bayes algorithms in identifying hearing-loss symptoms was found to be efficient, with a very small error rate. The average accuracy rate and average error rate for the multivariate Bernoulli model with FP-Growth feature transformation, using five training sets, are 98.25% and 1.73%, respectively.Ítem A multi-agent deep reinforcement learning approach for enhancement of COVID-19 CT image segmentation(MDPI, 2022-02-18) Allioui, Hanane; Mohammed, Mazin Abed ; Benameur, Narjes ; Al-Khateeb, Belal ; Abdulkareem, Karrar Hameed ; García-Zapirain, Begoña; Damasevicius, Robertas ; Maskeliunas, RytisCurrently, most mask extraction techniques are based on convolutional neural networks (CNNs). However, there are still numerous problems that mask extraction techniques need to solve. Thus, the most advanced methods to deploy artificial intelligence (AI) techniques are necessary. The use of cooperative agents in mask extraction increases the efficiency of automatic image segmentation. Hence, we introduce a new mask extraction method that is based on multi-agent deep reinforcement learning (DRL) to minimize the long-term manual mask extraction and to enhance medical image segmentation frameworks. A DRL-based method is introduced to deal with mask extraction issues. This new method utilizes a modified version of the Deep Q-Network to enable the mask detector to select masks from the image studied. Based on COVID-19 computed tomography (CT) images, we used DRL mask extraction-based techniques to extract visual features of COVID-19 infected areas and provide an accurate clinical diagnosis while optimizing the pathogenic diagnostic test and saving time. We collected CT images of different cases (normal chest CT, pneumonia, typical viral cases, and cases of COVID-19). Experimental validation achieved a precision of 97.12% with a Dice of 80.81%, a sensitivity of 79.97%, a specificity of 99.48%, a precision of 85.21%, an F1 score of 83.01%, a structural metric of 84.38%, and a mean absolute error of 0.86%. Additionally, the results of the visual segmentation clearly reflected the ground truth. The results reveal the proof of principle for using DRL to extract CT masks for an effective diagnosis of COVID-19.Ítem Multi-agent systems in fog–cloud computing for critical healthcare task management model (CHTM) used for ECG monitoring(MDPI, 2021-10-19) Mutlag, Ammar Awad; Ghani, Mohd Khanapi Abd; Mohammed, Mazin Abed; Lakhan, Abdullah; Mohd, Othman ; Abdulkareem, Karrar Hameed ; García-Zapirain, BegoñaIn the last decade, the developments in healthcare technologies have been increasing progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and blood pressure control connect with external servers in a manner called cloud computing. The emerging cloud paradigm offers different models, such as fog computing and edge computing, to enhance the performances of healthcare applications with minimum end-to-end delay in the network. However, many research challenges exist in the fog-cloud enabled network for healthcare applications. Therefore, in this paper, a Critical Healthcare Task Management (CHTM) model is proposed and implemented using an ECG dataset. We design a resource scheduling model among fog nodes at the fog level. A multi-agent system is proposed to provide the complete management of the network from the edge to the cloud. The proposed model overcomes the limitations of providing interoperability, resource sharing, scheduling, and dynamic task allocation to manage critical tasks significantly. The simulation results show that our model, in comparison with the cloud, significantly reduces the network usage by 79%, the response time by 90%, the network delay by 65%, the energy consumption by 81%, and the instance cost by 80%.Ítem Novel crow swarm optimization algorithm and selection approach for optimal deep learning COVID-19 diagnostic model(Hindawi Limited, 2022-08-13) Mohammed, Mazin Abed; Al-Khateeb, Belal ; Yousif, Mohammed ; Mostafa, Salama A.; Kadry, Seifedine ; Abdulkareem, Karrar Hameed ; García-Zapirain, BegoñaDue to the COVID-19 pandemic, computerized COVID-19 diagnosis studies are proliferating. The diversity of COVID-19 models raises the questions of which COVID-19 diagnostic model should be selected and which decision-makers of healthcare organizations should consider performance criteria. Because of this, a selection scheme is necessary to address all the above issues. This study proposes an integrated method for selecting the optimal deep learning model based on a novel crow swarm optimization algorithm for COVID-19 diagnosis. The crow swarm optimization is employed to find an optimal set of coefficients using a designed fitness function for evaluating the performance of the deep learning models. The crow swarm optimization is modified to obtain a good selected coefficient distribution by considering the best average fitness. We have utilized two datasets: the first dataset includes 746 computed tomography images, 349 of them are of confirmed COVID-19 cases and the other 397 are of healthy individuals, and the second dataset are composed of unimproved computed tomography images of the lung for 632 positive cases of COVID-19 with 15 trained and pretrained deep learning models with nine evaluation metrics are used to evaluate the developed methodology. Among the pretrained CNN and deep models using the first dataset, ResNet50 has an accuracy of 91.46% and a F1-score of 90.49%. For the first dataset, the ResNet50 algorithm is the optimal deep learning model selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5715.988 for COVID-19 computed tomography lung images case considered differential advancement. In contrast, the VGG16 algorithm is the optimal deep learning model is selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5758.791 for the second dataset. Overall, InceptionV3 had the lowest performance for both datasets. The proposed evaluation methodology is a helpful tool to assist healthcare managers in selecting and evaluating the optimal COVID-19 diagnosis models based on deep learning.Ítem A novel fuzzy parameterized fuzzy hypersoft set and riesz summability approach based decision support system for diagnosis of heart diseases(MDPI, 2022-06-22) Rahman, Atiqe Ur; Saeed, Muhammad ; Mohammed, Mazin Abed; Jaber, Mustafa Musa; García-Zapirain, BegoñaFuzzy parameterized fuzzy hypersoft set (∆-set) is more flexible and reliable model as it is capable of tackling features such as the assortment of attributes into their relevant subattributes and the determination of vague nature of parameters and their subparametric-valued tuples by employing the concept of fuzzy parameterization and multiargument approximations, respectively. The existing literature on medical diagnosis paid no attention to such features. Riesz Summability (a classical concept of mathematical analysis) is meant to cope with the sequential nature of data. This study aims to integrate these features collectively by using the concepts of fuzzy parameterized fuzzy hypersoft set (∆-set) and Riesz Summability. After investigating some properties and aggregations of ∆-set, two novel decision-support algorithms are proposed for medical diagnostic decision-making by using the aggregations of ∆-set and Riesz mean technique. These algorithms are then validated using a case study based on real attributes and subattributes of the Cleveland dataset for heart-ailments-based diagnosis. The real values of attributes and subattributes are transformed into fuzzy values by using appropriate transformation criteria. It is proved that both algorithms yield the same and reliable results while considering hypersoft settings. In order to judge flexibility and reliability, the preferential aspects of the proposed study are assessed by its structural comparison with some related pre-developed structures. The proposed approach ensures that reliable results can be obtained by taking a smaller number of evaluating traits and their related subvalues-based tuples for the diagnosis of heart-related ailments.Ítem Parametric methods for the regional assessment of cardiac wall motion abnormalities: comparison study(Tech Science Press, 2021-06-04) Benameur, Narjes; Mohammed, Mazin Abed ; Mahmoudi, Ramzi ; Arous, Younes; García-Zapirain, Begoña ; Abdulkareem, Karrar Hameed; Bedoui, Mohamed HédiLeft ventricular (LV) dysfunction is mainly assessed by global contractile indices such as ejection fraction and LV Volumes in cardiac MRI. While these indices give information about the presence or not of LV alteration, they are not able to identify the location and the size of such alteration. The aim of this study is to compare the performance of three parametric imaging techniques used in cardiac MRI for the regional quantification of cardiac dysfunction. The proposed approaches were evaluated on 20 patients with myocardial infarction and 20 subjects with normal function. Three parametric images approaches: covariance analysis, parametric images based on Hilbert transform and those based on the monogenic signal were evaluated using cine-MRI frames acquired in three planes of views. The results show that parametric images generated from the monogenic signal were superior in term of sensitivity (89.69%), specificity (86.51%) and accuracy (89.06%) to those based on covariance analysis and Hilbert transform in the detection of contractile dysfunction related to myocardial infarction. Therefore, the parametric image based on the monogenic signal is likely to provide additional regional indices about LV dysfunction and it may be used in clinical practice as a tool for the analysis of the myocardial alterations.