Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Ferrando, Juan Luis"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    IIoT protocols for Edge/Fog and Cloud computing in industrial AI: a high frequency perspective
    (IGI Global, 2024) Fernández de Barrena Sarasola, Telmo; García Gangoiti, Ander; Ferrando, Juan Luis
    Various industrial applications deal with high-frequency data. Traditionally, these systems have analyzed high-frequency data directly on the data source or at the commanding PLC. However, currently, Industry 4.0 technologies support new monitoring scenarios for high-frequency data monitoring where raw data is transmitted in soft-real time to an Edge/Fog or Cloud node for processing, enabling centralized computing. This demands efficient communication protocols capable of handling high-frequency, high-throughput data. This paper focuses on analyzing the performance of key IIoT (Industrial Internet of Things) messaging protocols-AMQP, MQTT, KAFKA, ZeroMQ, and OPCUA-to evaluate their suitability, in terms of latency and jitter, for transmitting high-frequency data within these new scenarios. The analysis reveals MQTT, AMQP, and ZeroMQ as top performers in Edge/Fog computing, while ZeroMQ exhibits the lowest latency and jitter in Cloud computing. Finally, a guideline for protocol selection is proposed, aiding industrial enterprises in protocol selection for specific AI use cases.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias