Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Eskubi Astobiza, Joseba"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Efficient machine learning on edge computing through data compression techniques
    (Institute of Electrical and Electronics Engineers Inc., 2023-03-29) Gomez Larrakoetxea, Nerea; Eskubi Astobiza, Joseba; Pastor López, Iker ; Sanz Urquijo, Borja; García Barruetabeña, Jon; Zubillaga Rego, Agustín José
    This paper discusses the increasing amount of data handled by companies and the need to use Big Data and Data Analytics to extract value from this data. However, due to the large amount of data collected, challenges related to the computational capacity of machines often arise when performing this analysis to acquire relevant information for the organization, especially when we are using edge computing. The paper aims to train machine learning models using compressed data, with two compression techniques applied to the original data. The results show that models trained with compressed data achieved similar accuracy to those trained with uncompressed data, and different compression techniques were compared. The research extended a previous study by analyzing the use of autoencoders for compression and reducing both instances and dimensionality of the dataset. The accuracy rate of the models when trained with compressed data instead of original data was maintained.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias