Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Clarke, Rebecca"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Machine learning models for weight-bearing activity type recognition based on accelerometry in postmenopausal women
    (MDPI, 2022-11-25) Huggins, Cameron; Clarke, Rebecca; Abásolo Baz, Daniel; Gil Rey, Erreka; Tobias, Jonathan H. ; Deere, Kevin; Allison, Sarah Jane
    Hip-worn triaxial accelerometers are widely used to assess physical activity in terms of energy expenditure. Methods for classification in terms of different types of activity of relevance to the skeleton in populations at risk of osteoporosis are not currently available. This publication aims to assess the accuracy of four machine learning models on binary (standing and walking) and tertiary (standing, walking, and jogging) classification tasks in postmenopausal women. Eighty women performed a shuttle test on an indoor track, of which thirty performed the same test on an indoor treadmill. The raw accelerometer data were pre-processed, converted into eighteen different features and then combined into nine unique feature sets. The four machine learning models were evaluated using three different validation methods. Using the leave-one-out validation method, the highest average accuracy for the binary classification model, 99.61%, was produced by a k-NN Manhattan classifier using a basic statistical feature set. For the tertiary classification model, the highest average accuracy, 94.04%, was produced by a k-NN Manhattan classifier using a feature set that included all 18 features. The methods and classifiers within this study can be applied to accelerometer data to more accurately characterize weight-bearing activity which are important to skeletal health.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias