Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Carlucho, Ignacio"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    Evaluating reinforcement learning-based neural controllers for quadcopter navigation in windy conditions
    (Elsevier Ltd, 2025-09-04) Andrés Fernández, Alain; Martínez, Aritz D.; Tunçay, Sümer; Carlucho, Ignacio
    Accurate quadcopter navigation under windy conditions remains challenging for traditional control methods, especially in the presence of unpredictable wind gusts and strict navigational constraints. This paper evaluates Deep Reinforcement Learning (DRL) based controllers under such conditions, analysing the impact of wind domain randomisation, multi-goal training, enhanced state representations with explicit wind information, and the use of temporal data to capture affecting dynamics over time. Experiments in the AirSim simulator across four trajectories — evaluated under both no-wind and windy conditions — demonstrate that DRL-based controllers outperform classical methods, particularly under stochastic wind disturbances. Moreover, we show that training a DRL agent with domain randomisation improves robustness against wind but reduces efficiency in no-wind scenarios. However, incorporating wind information into the agent's state space enhances robustness without sacrificing performance in wind-free settings. Furthermore, training with stricter waypoint constraints emerges as the most effective strategy, leading to precise trajectories and improved generalisation to wind disturbances. To further interpret the learned policies, we apply Shapley Additive explanations analysis, revealing how different training configurations influence the agent's feature importance. These findings underscore the potential of DRL-based neural controllers for resilient autonomous aerial systems, highlighting the importance of structured training strategies, informed state representations, and explainability for real-world deployment.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias