Examinando por Autor "Bruno, Agostino Walter"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem CFD modelling of the effect of capillary pressure on retention behaviour of water menisci at inter-particle contacts(EDP Sciences, 2021-06-07) López García, Alejandro; Bruno, Agostino Walter; Nadimi, SadeghThis paper presents a Computational Fluid Dynamics (CFD) model on the effect of capillary pressure on the retention behaviour of a granular material. The model proposes an unprecedented CFD insight into the onset of liquid menisci at the inter-particles contact under varying hydraulic conditions. The present work models the material grains as smooth spherical particles that define a porous network filled by two interstitial fluids: air and silicon oil. The numerical model has been subsequently validated against experimental measurements of the degree of saturation at different capillary pressures taken by Dullien et al. [F.A. Dullien, C. Zarcone, I.F. MacDonald, A. Collins, R.D. Bochard. J. Colloid Interface Sci. 127, 2 (1989)] in a system of smooth glass beads flooded with silicon oil. Results from the numerical simulations confirm the good capability of the model to reproduce the experimental retention behaviour of the granular material. Finally, the present paper laid the basis for future CFD studies on the effect of various factors (e.g. hydraulic hysteresis, surface roughness and/or grain shape) on the capillary pressure acting at the inter-particle contact.Ítem Micro computed tomography images of capillary actions in rough and irregular granular materials(Nature Research, 2024-01-16) Nadimi, Sadegh; Mendes, Joao; López García, Alejandro; Schröer, Laurenz; Manoorkar, Sojwal; Ellman, Sharon; Cnudde, Veerle; Bruno, Agostino WalterThe present work investigates the effect of both surface roughness and particle morphology on the retention behaviour of granular materials via X-ray micro-computed tomography (µCT) observations. X-ray µCT images were taken on two types of spherical glass beads (i.e. smooth and rough) and two different sands (i.e. natural and roughened). Each sample was subjected to drainage and soaking paths consisting in a multiphase ‘static’ flow of potassium iodine (KI) brine (wetting phase) and dry air (non-wetting phase). Tomograms were obtained at different saturation states ranging from fully brine saturated to air dry conditions with 6.2 μm voxel size resolution. The data acquisition and pre-processing are here described while all data, a total of 48 tomograms, are made publicly available. The combined dataset offers new opportunities to study the influence of surface roughness and particle morphology on capillary actions as well as supporting validation of pore-scale models of multiphase flow in granular materials.