Examinando por Autor "Borovkov, Herman"
Mostrando 1 - 2 de 2
Resultados por página
Opciones de ordenación
Ítem In-line height measurement technique for directed energy deposition processes(MDPI AG, 2021-08-05) Borovkov, Herman; García de la Yedra, Aitor; Zurutuza, Xabier; Angulo, Xabier; Álvarez, Pedro; Pereira, Juan Carlos; Cortés Martínez, FernandoDirected energy deposition (DED) is a family of additive manufacturing technologies. With these processes, metal parts are built layer by layer, introducing dynamics that propagate in time and layer-domains, which implies additional complexity and consequently, the resulting part quality is hard to predict. Control of the deposit layer thickness and height is a critical issue since it impacts on geometrical accuracy, process stability, and the overall quality of the product. Therefore, online feedback height control for DED processes with proper sensor strategies is required. This work presents a novel vision-based triangulation technique through an off-axis located CCD camera synchronized with a 640 nm wavelength pulsed illumination laser. Image processing and machine vision techniques allow in-line height measurement right after metal solidification. The linearity and the precision of the proposed setup are validated through off-and in-process trials in the laser metal deposition (LMD) process. Besides, the performance of the developed in-line inspection system has also been tested for the Arc based DED process and compared against experimental weld bead characterization data. In this last case, the system additionally allowed for the measurement of weld bead width and contact angles, which are critical in first runs of multilayer buildups.Ítem Optimization of thin walls with sharp corners in SS316L and IN718 alloys manufactured with laser metal deposition(MDPI AG, 2021-01-05) Pereira, Juan Carlos; Borovkov, Herman ; Zubiri, Fidel; Guerra, Mari Carmen; Caminos, JosuIn this work, the manufacture of thin walls with sharp corners has been optimized by adjusting the limits of a 3-axis cartesian kinematics through data recorded and analyzed off-line, such as axis speed, acceleration and the positioning of the X and Y axes. The study was carried out with two powder materials (SS316L and IN718) using the directed energy deposition process with laser. Thin walls were obtained with 1 mm thickness and only one bead per layer and straight/sharp corners at 90◦ . After adjusting the in-position parameter G502 for positioning precision on the FAGOR 8070 CNC system, it has been possible to obtain walls with minimal accumulation of material in the corner, and with practically constant layer thickness and height, with a radii of internal curvature between 0.11 and 0.24 mm for two different precision configuration. The best results have been obtained by identifying the correct balance between the decrease in programmed speed and the precision in the positioning to reach the point defined as wall corner, with speed reductions of 29% for a programmed speed of 20 mm/s and 61% for a speed of 40 mm/s. The walls show minimal defects such as residual porosities, and the microstructure is adequate.