Logotipo del repositorio
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
Logotipo del repositorio
  • DeustoTeka
  • Comunidades
  • Todo DSpace
  • Políticas
  • English
  • Español
  • Euskara
  • Iniciar sesión
    ¿Nuevo usuario? Regístrese aquí¿Ha olvidado su contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Aginagalde, Andrea"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Ítem
    On the use of machine learning for predicting femtosecond laser grooves in tribological applications
    (Elsevier Ltd, 2024-12) Moles, Luis; Llavori, Iñigo; Aginagalde, Andrea; Echegaray, Goretti; Bruneel, David; Boto Sánchez, Fernando; Zabala, Alaitz
    Femtosecond laser surface texturing is gaining increased interest for optimizing tribological behaviour. However, the laser surface texturing parameter selection is often conducted through time-consuming and inefficient trial-and-error processes. Although machine learning emerges as an interesting option, multitude of models exists, and determining the most suitable one for predicting femtosecond laser textures remains uncertain. Furthermore, the absence of open-source implementations and the expertise required for their utilization hinders their adoption within the tribology community. In this study, two novel inverse modelling approaches for the optimal prediction of femtosecond laser parameters are proposed, based on the results of a comparison between six different machine learning models conducted within this research. The entire development relies on open-source tools, and the models employed are shared, with the aim of democratizing these techniques and facilitating their adoption by non-expert users within the tribology community.
  • Icono ubicación Avda. Universidades 24
    48007 Bilbao
  • Icono ubicación+34 944 139 000
  • ContactoContacto
Rights

Excepto si se señala otra cosa, la licencia del ítem se describe como:
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License

Software DSpace copyright © 2002-2025 LYRASIS

  • Configuración de cookies
  • Enviar sugerencias