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Abstract 
 

Causal learning models make different assumptions about how people 

should combine the influence of different potential causes presented in 

combination. Based on the linear integration rule, some models propose that 

the causal impact of a compound should equal the linear sum of each of the 

causes presented in isolation. Other models such as the Power PC theory are 

based on a different integration rule, the noisy-OR, suggesting that the rational 

way of computing the causal impact of a compound involves correcting the sum 

of the causes by subtracting the overlap between them. The present experiments 

tested which integration rule people use. Four different cover stories were used 

to ensure that the participants understood the independence of the causes. The 

experiments used different sets of probabilities and several formats for 

presenting information. The results of most experiments do not confirm the 

predictions of the noisy-OR integration rule. Only one experiment (of ten) 

supports the predictions of the noisy-OR rule. In spite of having mixed 

evidence, people do not appear to spontaneously use this rule. We discuss the 

implications of our results and alternative explanations for our pattern of data, 

including inhibitory mechanisms and an averaging heuristic. 
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Resumen 
 

Los modelos de aprendizaje causal parten de diferentes supuestos acerca 

de cómo la gente debería combinar la influencia de diferentes causas potenciales 

cuando se presentan en compuesto. Algunos modelos parten de la regla de 

integración lineal, proponiendo que el impacto causal de un compuesto debe ser 

igual a la suma lineal de cada una de las causas presentadas en solitario. Otros 

modelos como Power PC están basados en una regla de integración diferente, 

noisy-OR, que sugiere que la manera racional de computar el impacto causal de 

un compuesto requiere corregir la suma lineal de las causas restando la 

superposición entre ambas. Los experimentos de esta tesis pusieron a prueba 

qué regla de integración usa la gente. Se utilizaron cuatro escenarios causales 

para asegurar que los participasen percibiesen las causas como independientes. 

Los experimentos constaban de diferentes sets de probabilidades y de diversos 

formatos a la hora de presentar la información. Los resultados de la mayoría de 

los experimentos no confirman las predicciones de la regla de integración noisy-

OR. Sólo un experimento (entre diez) apoya dichas predicciones. A pesar de 

tener evidencia contradictoria, la gente no parece usar de manera espontánea 

esta regla de integración. Se discuten las implicaciones de nuestros resultados y 

explicaciones alternativas a nuestro patrón de datos, incluyendo mecanismos de 

carácter inhibitorio y el posible uso de un heurístico de promedio.  
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Chapter 1. Introduction 

 

‘How dare we speak of the laws of chance? Is not chance the antithesis 

of all law?’ 

Joseph Bertrand 

 

What do we mean when we talk about causal knowledge? I will try to 

explain what the term “causal knowledge” means, and how we extract 

knowledge about each present and absent cause of a final result. Frequently, the 

best way to check how people learn about causes, consequences and their 

interactions is to design an experiment in which all the information available is 

fully controlled. As the reader will soon discover, all the experiments that will be 

described in this thesis have been, to a greater or lesser extent, influenced by 

passion for science fiction. Therefore, I will use one of the top novels from this 

genre to explain what causal knowledge is and how in certain situations having 

a precise causal knowledge can be a matter of life or death. 

Hyperion (Simmons, 1989) is the first novel in the Hyperion Cantos 

tetralogy. The author, following a narrative structure similar to The Canterbury 
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Tales by Geoffrey Chaucer and Boccaccio‘s Decameron, presents a future where 

humanity has colonized dozens of worlds in the galaxy and dominates the 

teleportation and space travel at supraluminal velocities.  

In the distant world called Hyperion, beyond the Hegemony of Man 

network, await the Time Tombs, artifacts sent from the far future which are 

about to open, and hide a terrible secret related to an impossible creature that 

only communicates through death. The Shrike, or Lord of Pain, is considered by 

some as a deity and by others as an avatar of the impending human atonement. 

Also, external creatures known as ‘exters’, descendants of the old Earth, have 

shown the same interest in this strange world. For unknown reasons, all 

powerful groups in the known universe want to take control of the planet at the 

moment that the Time Tombs will be opened. On the eve of Armageddon, and 

against the backdrop of a possible war between the Hegemony, exter swarms, 

and artificial intelligences from the ‘TechnoCore’, seven pilgrims undertake the 

route to Hyperion to resurrect an ancient religious ritual, and here is where the 

story really begins. 

They all carry impossible hopes and terrible secrets. A diplomat, a priest, 

a soldier, a poet, a teacher, a detective, and a navigator entwine their lives and 

their destinies in this journey in search of the Shrike and the Time Tombs. The 

Shrike granted one desire to only one of the pilgrims. The rest shall surely die, 

in terribly painful ways. Their personal stories compose a kaleidoscopic and 

evocative vision of the complex society in which they live and which, perhaps, 

can save.  

http://en.wikipedia.org/wiki/Decameron
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How do the pilgrims manage to survive? It is their first trip to Hyperion, 

they have no prior knowledge of its dangers. They do not know what things are 

dangerous, and what beneficial, or if suffering one of the causes prevents them 

from suffering others. They do not know if there is any way to offset the effects 

of certain things. They know nothing. They have no causal knowledge, yet. But 

they need it to succeed. They are aware at all times that survival depends 

directly on the knowledge that they are able to extract about the environment. 

The more precise and accurate the knowledge, the more likely they are to 

remain alive. There are a number of factors that can be potentially dangerous, 

the pilgrims need to learn as much as possible about all the elements they are 

likely to be exposed to, and use this knowledge to develop a strategy that allows 

them to maximize their chances of survival. This is the causal knowledge, and it 

is important because it ensures adaptation to the environment and, moreover, 

for survival when life or death depends on knowing what causes and 

consequences are connected. I will not describe more about the end of the book, 

and who among pilgrims was able to survive, if any did, I refer the reader to 

read and enjoy this work by Simmons. 

Causal reasoning, reasoning about causes and consequences, represents 

one of the most basic but important cognitive processes that underpin all high-

order activities (Jonassen & Ionas, 2008). The ability to detect the contingencies 

(or relations) between the events in the environment is central to most types of 

behavior, including learning, causal judgment, categorization, problem solving, 

and hypothesis testing (Crocker, 1981). This capacity is critical for planning, 
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acting and reasoning (Spellman, 1997; Buehner & Cheng, 2005), and allows us 

to develop adaptive behavior, through the prediction and control of the events 

in our lives (Tolman & Brunswik, 1935). Without this ability, our potential to 

adapt would be severely compromised. How could any cognitive system learn 

causal relations from simple associations of events? How do people do it daily? 

There is, obviously nothing new in these questions, they have been the focus of 

philosophical accounts since Aristotle, and of many great modern philosophers 

including Descartes,  Hume (1739), and Kant (1781).  

Causal learning and probabilistic reasoning are essential to predict how a 

system will behave. Often we infer causal relations on the basis of probabilistic 

data, but not every correlation indicates a direct causal relation. Conceptions of 

probability have been around for thousands of years (Stigler, 1990; Franklin, 

2001; Hald, 2003; Hacking, 2006), but probability theory did not arise as a 

branch of mathematics until the mid-seventeenth century. Luca Pacioli (1494) 

authored the first printed work on probability, but the mathematical theory of 

probability has its roots in attempts to analyze games of chance by Gerolamo 

Cardano. His gambling led him to formulate elementary probability rules, 

making him one of the founders of the field (Ore, 1953). In 17th century French 

society, gambling was popular and fashionable, and not restricted by law. As the 

games became more complicated there was a need for mathematical methods 

for computing chances. A well-known gambler, Antoine Gombaud, the chevalier 

De Mere, consulted Blaise Pascal in Paris about some games of chance, and 

Pascal began to correspond with his friend Pierre Fermat about these problems. 
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The correspondence between Pascal and Fermat is the origin of the 

mathematical study of probability (Devlin, 2008). The method they developed is 

now called the classical approach to computing probabilities. Through the 18th 

century, the application of probability theory expanded from games of chance to 

scientific problems. The best exemplar of applied probability theory was 

Laplace’s (1812) book. Many workers have contributed to the theory since 

Laplace’s time, among the most important are Chebyshev, Markov, von Mises, 

and Kolmogorov. Andrey Kolmogorov (1933) developed the first rigurous 

approach to probability, where he built up probability theory from fundamental 

axioms in a way comparable with Euclid’s treatment of geometry (for a review, 

see Heath, 1956). 

Probabilistic reasoning involves estimating the probability of the 

occurrence of an event based on some knowledge. It is critical to understand the 

relationships between the significant events in the environment in order to exert 

the higher possible degree of control over them, and inevitably, chance and 

random phenomena permeate our lives and our environment (Bennet, 1998). 

Nonetheless we may not be well suited to accurate do this type of reasoning. In 

the words of Persi Diaconis (1989): ‘Our brains are just not wired to do 

probability problems very well’. Moreover, many recent psychological studies 

have provided evidence that people have trouble with probability (e.g., Lewens, 

2007; Nickerson, 2008; Taynes, 2003). It is not just the general population that 

has difficulty with numerical tasks, studies have shown that even highly 

educated laypersons and health professionals have an inadequate 
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understanding of probabilities and other chance-related concepts (Estrada, 

Barnes, Collins & Byrd, 1999; Lipkus, Sansa, & Rimer, 2001; Nelson, Reyna, 

Fagerlin, Lipkus, & Peters, 2008; Reyna, Lloyd, & Whalen, 2001; Sheridan & 

Pignone, 2002). There is no a priory reason to expect correct, normative 

solutions for dealing with numbers, frequencies and probabilities in causal 

learning. Perhaps there is no domain in which such a normative solution exists. 

As outlined below, many theories describe causal reasoning as a particular type 

of probabilistic reasoning. Or, at least, propose that probabilistic reasoning is 

part of the processes necessary for causal reasoning. Therefore, the major 

debates about the rationality of probabilistic thinking are relevant to the subject 

of this thesis. 

To give a proper explanation of how humans deal with probabilistic 

causal learning, we must first take into account a number of issues. First, how 

do we measure causal learning in the laboratory? In most modern studies of 

human contingency learning, participants receive information about situations 

in which certain cues (the potential causes in our Hyperion example) and 

outcomes (the probability of dying or living) are either present or absent, and 

are asked to evaluate to what extent the presence of a given cause is related to 

the presence of the outcome (Allan, 1980; Dickinson, Shanks, & Evenden, 1984; 

Baker, Berbrier, & Vallée-Tourangeau, 1989; De Houwer & Beckers, 2002, 

Treisman, 1998; Buehner, Cheng, & Clifford, 2003). At the procedural level, 

these studies of contingency learning are very similar to those of Pavlovian 

conditioning: Stimuli (cues and outcomes) are paired in a certain way, and the 
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resulting changes in the responses to the stimuli (contingency judgments) are 

assessed.  It is therefore not surprising that many of the causal learning models 

that will be explained later have their roots in the same models that have been 

used to explain all kinds of associative learning, including classical and 

instrumental conditioning in animals (Rescorla and Wagner, 1972; Dickinson, 

1980; Mackintosh, 1974). 
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Chapter 2. Causal Integration Rules 
 

 

 

The present work focuses on how people combine the influence of several 

causes of an outcome (or effect). Although at first glance it might seem that 

acquiring causal knowledge and using this causal knowledge are different 

processes, the fact is that they are closely related. Theories that attempt to 

explain how learning occurs also contain explicit or implicit assumptions not 

only about how we learn but also how we combine our knowledge about 

different causative factors. To compute the causal strength of a possible 

candidate cause, most causal induction models subtract the probability that the 

effect occurs when the cause is absent from the probability of the effect when 

the cause is present (Rescorla & Wagner, 1972; Cheng & Novick, 1990; Cheng, 

1997). The models differ in how this subtraction should be performed, 

depending on different assumptions about how the causal impact of multiple 

causes should be combined. When we know that A is a potential cause, and B is 

another potential cause, then we can ask what would be the combined effect of A 

and B based on the different learning models at our disposal. The simplest 
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assumption about how several causes presented together determine the 

probability of the effect is that the impact of each cause should be computed by 

simple linear addition. But there are alternative and arguably more normative 

assumptions. 

This notion can be illustrated with an example that will be used in several 

of my experiments. Imagine that scientists have discovered a number of 

chemical substances that can change one’s eye colour to pink. Each substance 

has a different causal force, that is, a different probability of achieving the effect 

(changing the eye colour). For commercial reasons, drug companies sell 

combinations of these substances. We are informed that the substance A has a 

40% probability of achieving the effect, and that the substance B also has a 

probability of 40% of achieving the effect. The product that is marketed has a 

combination of substances A and B. How likely is the product to change the eye 

color to pink? Following the simple linear addition rule in this scenario, if we 

know that cause A produces an outcome 40% of the time and B produces the 

same outcome 40% of the time, when both are present (and assuming that no 

other effective cause is present) the probability of the effect should be equal to 

80%. This is the law for combining mutually exclusive probabilities (Dieks, 

González, Hartmann, Stöltzner, & Weber, 2012). Following this reasoning, 

isolating the role of a single cue from the effect of a larger collection of 

alternative causes is based on a simple linear subtraction. As I will show later, 

this assumption is made in many formal models of causal learning (Allan, 1980; 

Cheng & Novick, 1992; Jenkins & Ward, 1965; Rescorla & Wagner, 1972). The 
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linear integration rule is a very simple strategy to combine the effect of several 

causes on an outcome. But this does not necessarily mean that it is the correct 

strategy. In other words, it does not mean that it is normative, but it can be seen 

as normative. By using a simple coin tossing game we can show how this 

solution can be non-normative. 

  Imagine a game in which two coins (i.e., candidate causes, Coin 1 and Coin 

2) are tossed. To win, you need at least one of the tosses (or both) come up 

heads. Thus, a head on either coin means that you win. If both coins are tossed 

together, either or both of them might come up heads and hence meet the 

conditions for generating the desired outcome of at least one head. If the coins 

are unbiased the probability of getting heads tossing Coin 1 would be 50% and 

the probability of getting heads tossing Coin 2 would also be 50%. Using the 

linear summation rule, the probability of the outcome (getting heads) would be 

50% + 50%= 100%. This illustrates the problem. We have all thrown coins many 

times, enough times to know that tossing two coins at the same time does not 

guarantee that we will get at least one head. The linear integration rule leads to 

an incorrect result; this is easily appreciated by studying the sequence of 

possible outcomes depicted below: 
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 Figure 1 shows that when both coins are tossed, there are only four 

possible permutations of heads and tails: both coins are heads; the first is heads 

and the second tails; the first is tails and the second heads; or both are tails. In 

the first three cases the winning condition is achieved because each includes at 

least one head but in the final case the outcome does not happen – you lose. If 

only one of the coins is tossed, we win in 1/2 of the tosses (50% of the time). But 

if Coin 2 is tossed along with Coin 1 then we win on 3⁄4 of the tosses (75% of the 

time). If we follow the logic of the linear integration rule assuming 75% wins, 

the contribution of tossing Coin 2 to winning is the linear difference between the 

Figure 1. Four permutations when both coins are tossed. Smilies 

denote heads, and crosses denote tails. 

Win 

Lose 
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probability of winning if Coin 1 is tossed (50%) and the probability of winning 

when both are tossed (75%). Thus, by the linear integration rule, we would have 

to deduce that the power of Coin 2 is 25%. However we know that actual 

likelihood of an outcome given the tossing of Coin 2 is 50%. This is one of the 

most important problems of the linear integration rule assuming independent 

probabilities: If a coin is tossed first its effectiveness is 50%; if it is tossed 

second it is 25%. When extrapolating the results of a causal inference to a novel 

context, the linear integration rule sometimes leads to problems of coherence, 

as some authors have pointed out (Cheng, Novick, Liljeholm, & Ford, 2007; 

Liljeholm & Cheng, 2007).  

Patricia Cheng (1997) suggested that the combined causal power of several 

causes should be computed by means of a different integration rule, the noisy-

OR rule integration rule. This integration rule is based on the law of 

independent probabilities. It is clear from our coin tossing example that when 

the second coin is tossed, at least part of its effectiveness is masked because 

sometime both it and the first coin meet the conditions for an outcome. An 

Euler diagram illustrating this is shown in Figure 2. It depicts the assumptions 

made by the noisy-OR integration rule. The plus signs (+) denotes the 

occurrence of the effect, and the minus signs (-) the absence of the effect. When 

the two causes, A and B, are present, some instances of the effect are due to A, 

some to B, and some others to the joint effect of A and B, thus, fall into the 

intersection between them. 
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According to the noisy-OR rule, the probability of the effect if two potential 

causes A and B are present (and no other effective cause is present) can be 

computed as follows: 

 

𝑝 (𝑒|𝐴&𝐵) = 𝑞𝐴 +  𝑞𝐵 −  (𝑞𝐴 ·  𝑞𝐵)   Equation 1 

 

Where qA and qB are the causal influences of A and B to produce the effect 

e. The strength or causal influence of a potential binary cause is the proportion 

of times it produces the outcome, in a hypothetical context in which no other 

effective causes of the same outcome exist (Cheng, 1997).  

Figure 2. Euler diagram illustrating the assumptions of the noisy-

OR rule. Plus signs denote the presence of the outcome, whereas 

minus signs denote no outcome. In the intersection, some instances 

of the effect are due to the joint effect of A and B. 
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Consider the product from the pink eyes scenario that combined A and B 

substances, each with a 40% of probability of causing pink eyes. If we use the 

noisy-OR integration rule, we correct the linear sum of the two independent 

probabilities (80%) by subtracting the overlap between them (by applying 

Formula 1), generating a likelihood of producing pink eyes of 64% [i.e., 40% + 

40% - 16].  

This noisy-OR rule is incorporated in several causal learning models that I 

will discuss below. It is particularly clear in the Power PC model, but it is used in 

associative models too (Danks, Griffiths, & Tenenbaum, 2003), and it also 

appears in some form in Bayesian causal induction models (c.f., Griffiths & 

Tenenbaum, 2005, 2009). According to the noisy-OR rule the probability of an 

effect falls between the probability of the effect given the stronger single cause 

and the linear sum of the probabilities. Returning to the pink eyes example, if 

we want to know the probability of the effect given A (40%) and B (40%), the 

noisy-OR rule predicts that it should be above 40% and below 80%, thus, the 

compound of the two causes is more effective than the stronger cause alone but 

less than their sum. But, do people spontaneously use this rule for independent 

binary causes? Or, do they default to the simpler linear summation rule? The 

“rational” solution, assuming independent probabilities, is the noisy-OR 

strategy, but people do not always follow rationality when making decisions.  
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Chapter 3.  Models of Causal Learning 

  

‘Concepts, like individuals, have their histories, and are just as 

incapable of withstanding the ravages of time as are individuals’ 

Kierkegaard 

 

The nature of the psychological process underlying human causal 

learning and judgment has been the subject of some controversy (Holyoak & 

Cheng, 2011; Mitchell, De Houwer & Lovibond, 2009; Shanks, 2010). This 

debate concerns the relative viability of three major positions in this field: Rule-

based models, associative models, and Bayesian models. Rule-based models 

represent organisms as “intuitive statisticians” who can extract contingency 

information by applying a rule to integrate probabilities or frequencies of events 

(Peterson & Beach, 1967). By contrast, associative models postulate that 

contingency learning is, in fact, the result of associations formed between all 

contiguously presented events. Finally, Bayesian approaches to cognition take 

into account beliefs and expectations in the form of a prior probability 
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distribution over potential hypotheses. Our previous beliefs are transformed 

into posterior beliefs in light of new data. Each of them will be described in 

detail. 

 

 

3.1. Rule-based models 
 

 

Edwards (1954) postulated that humans behave as if they calculated 

probabilities and acted as ‘intuitive statisticians’. This concept is at the core of 

rule-based models. According to rule-based accounts, people encode 

representations of event frequencies during learning, and then combine this 

information according to some arithmetical rule to arrive at a final contingency 

judgment. But how does the person fulfill this role as an “intuitive statistician” 

and then use this information to make a judgment? In many cases, the events 

are binary (something happens or does not happen, like getting heads on a coin 

tossing game). With binary causes and effects, the statistical relation between 

the cause and the effect can be cast in a traditional 2 x 2 contingency table (see 

Table 1) where cell a contains the frequency of co-occurrence of the presumed 

cause (C) and the outcome or effect (E), cell b contains the frequency of the 

occurrence of the cause without the effect (~E), cell c the frequency of the 

outcomes when the cause is absent (~C), and cell d contains the frequency of the 

joint absence of the cause and the outcome. According to rule-based models, it 

is assumed that people store some mental representation of this contingency 
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table and to make their judgments they apply some arithmetic rule to this stored 

information. 

 

 

   Effect 

   Present (𝐸)  Absent (~𝐸) 

Potential Cause 

Present (𝐶)  a  b 

Absent (~𝐶)  c  d 

 

 

 

 

3. 1. 1. ∆P and Probabilistic Contrast Model 
 

 

  Although they are different in some aspects, in this section ∆P and 

Probabilistic Contrast Model (PCM hereinafter) models will be covered together 

as they share many factors like the integration rule they use, and some 

theoretical problems. According to the ∆P model, the relation between such 

binary events mentioned in Table 1 is quantified using the ∆P coefficient (Allan, 

1980; Cheng & Novick, 1992; Jenkins & Ward, 1965), which is defined as the 

difference betweem the probability of the outcome given the presumed cause, 

p(e|c), and the probability of the outcome in the absence of the presumed cause, 

Table 1. 2 x 2 contingency table. 
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p(e|~c). This is formally represented in an equation that relates the probabilities 

to frequencies: 

 

∆𝑃 = 𝑝(𝑒|𝑐) −  𝑝(𝑒|~𝑐) =  
𝑎

(𝑎+𝑏)
 −  

𝑐

(𝑐+𝑑)
    Equation 2 

 

Intuitively, ∆P refers to the difference a potential cause makes in the 

probability of the occurrence of the effect (Perales & Shanks, 2008). When 

p(e|c) exceeds p(e|~c) the contingency is positive, and we would assume that c 

is a generative cause of the effect (e), as long as c is not itself correlated with 

another event which is the true cause. When p(e|~c) exceeds p(e|c) the 

contingency is negative and we would assume that c prevents or reduces the 

likelihood of the effect.  Finally, when p(e|c) and p(e|~c) are equal there is a 

zero contingency, and we would assume that the cause has no influence over the 

outcome. 

On other hand, the PCM (Cheng & Novick, 1990, 1991, 1992) proposes 

that people start out with some pre-existing conceptions of possible causal 

factors. Then, contrasts (or covariation like the one defined by the ∆P rule) are 

computed for ‘focal sets’ that are restricted to events in which each of these 

factors are systematically present or absent to identify which is the specific 

influence of the target cause over the outcome (Cheng & Novick, 1992). 

Specifically, Cheng and Novick (1990, 1992) proposed in their PCM that ∆P 

index should be calculated holding constant all relevant factors except the 

potential cause being valued. This is analagous to the scientific processs of 
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holding other factors constant while studying the effect of a single factor. To 

differentiate the general ∆P index, this new index is called conditional ∆P.  

A very large number of studies have shown that associative judgments are 

highly sensitive to variations in ∆P  (Allan, 1993; Peterson, 1980, Shanks, 1985, 

1987, 1995; Shanks & Dickinson, 1987; Ward & Jenkins, 1965; Wasserman, 

Elek, Chatlosh & Baker, 1993), and that the correspondence between ∆P  and 

judgments is often remarkably close. However, although it is true that causal 

judgments tend to correlate with ∆P, this correlation is far from perfect (Perales 

& Shanks, 2007). There are a number of studies showing that judgments 

systematically vary across conditions in which ∆P is held constant  (Allan, 

Siegel, & Tangen, 2005; Blanco, Matute & Vadillo, 2013; Blanco, Matute, & 

Vadillo, 2011; Buehner, Cheng, & Clifford, 2003; Lober & Shanks, 2000; López, 

Almaraz, Fernández, & Shanks, 1999; Matute, 1995, 1996; Matute, Yarritu, & 

Vadillo, 2011; Hannah & Beneteau, 2009; Yarritu, Matute, & Vadillo, 2014; 

Wasserman et al, 1993); so it is apparent that ∆P does not provide a complete 

description human causal reasoning. As White (2009) pointed out, one problem 

is that the ∆P rule only indicates the degree of empirical association between a 

posible cause and an outcome, and not the strength of the cause or the 

likelihood that it does cause the outcome. 

The most important thing to keep in mind regarding these models is that 

they use a linear integration rule to combine the influence of several potential 

causes, which is not only related with being rule-based models, as these models 

can employ either a linear or a noisy-OR rule. As this thesis is focused on testing 

which integration rule people use when combining multiple causes, this work is 

relevant to the understanding of causal learning models.  The experiments that 
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comprise the thesis should show which integration rules people use, supporting 

some models but not others. 

 

 

3. 1. 2. Power PC model 
 

 

Although, as mentioned above, people’s causal and contingency 

judgments often map onto ∆P (Wasserman, Elek, Chatlosh, & Baker, 1993), 

Patricia Cheng (1997) has argued that ∆P is an inappropriate measure of 

contingency because it states that a pair of events can be known to be unrelated 

in conditions in which any reasonable person would conclude that there is 

insufficient evidence to decide whether or not they are related (Wu & Cheng, 

1999). For this reason, she presented a new model of causal induction called the 

power PC theory, intended to be both a normative and descriptive account of 

causal induction. Although the theory is in some aspects very complex, at its 

core two very simple equations specify the degree of causal power between a 

target cause and an effect as a function of the probability of the effect in the 

presence and the absence of the potential cause. The starting point of this 

account is the existence of some normative problems that appear not to be 

solved properly by either the ∆P rule or the PCM, and as mentioned above, by 

some empirical findings that are difficult to reconcile with the predictions of 

these models.  
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 Causal power and causal structures are theoretical entities that need to be 

estimated, combining causes to infer the causal structure behind them, and 

assess their causal strength (Cheng, 1997; Waldmann, Cheng, Hagmayer, & 

Blaisdell, 2008; Waldmann & Holyoak, 1992). Starting from a rational analysis 

of situations involving causal judgments, Cheng  (1997) showed that deriving a 

normative computation of the strength of a causal relation is possible (assuming 

compliance with certain restrictions of the model). For example, if one suffers 

spontaneous irritation (e or effect) from time to time, it is reasonable to assume 

there is something in the environment (a or background causes) responsible for 

that. If the introduction of a new factor such as a new food (c or cause) makes 

the irritation more probable, then we could reasonably argue that the joint 

probability of the effect and  the cause, p(e|c), reflects the additive effects of the 

candidate factor and the background causes. If we now assume that a and c are 

independente and non-interactive, we can segregate the influence of c from the 

a*c compound by applying probability calculus. Causal strength computed 

following this way is called generative causal power or q: 

 

𝑞 =  
∆𝑝

1−𝑝(𝑒|~𝑐)
     Equation 3 

 

Thus, causal power is directly related with contingency and the base rate 

of the effect in the absence of the target cause. Therefore, the power PC theory 

suggests that ∆P is a conservative estimator of causal power. For generative 



46  In search of Rationality in Human Causal Learning 

 

causes, the higher p(e|~c) is, the more conservative ∆P is. In the case of 

preventive causes, causal power is computed as p: 

 

𝑝 =  
− ∆𝑝

𝑝(𝑒|~𝑐)
                 Equation 4 

For preventive causes, the lower p(e|~c), the more conservative ∆P is.  In 

the case where the effect does never occur, the preventive power cannot be 

computed. It follows from Equation 3 that the generative causal power of the 

target cause to be judged can not be estimated if the effect occurs in every case 

in which the target factor is absent. Similarly, it follows from equation 4 that the 

preventive causal power of the target cause to be judged can not be estimated if 

the effect does not occur in any case in which the target factor is absent. 

Whether or not human causal intuitions actually conform to the power 

PC theory’s predictions for intermediate probability base rates is a matter of 

some dispute (Allan, 2003; Barberia, Baetu, Sansa & Baker, 2014; Collins & 

Shanks, 2006; Griffiths & Tenenbaum, 2005; Perales & Shanks, 2007, 2008). 

Some studies have demonstrated that causal judgments are well calibrated to 

causal power (Buehner, Cheng, & Clifford, 2003), but clear violations of the rule 

have also been reported (Lober & Shanks, 2000). Buehner and his colleagues 

argued that these violations of the power PC theory can be attributable either to 

inherent ambiguities in the typical wording of causal judgment questions, or  to 

memory biases. The typical wording regarding causal judgments leaves open 

whether causal influence should be judged in the same context as learning, or in 

a different (conterfactual) context in which background causes of the effect are 
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not present. Participants may truly base their causal estimates on power, but 

misrepresent the conditional probabilities p(e|c) and p(e|~c) on which the 

power calculation is based. If that were the case, any bias in power-based causal 

judgments could be due to bias in perceiving the conditional probabilities. 

More important for the present work is the problem raised by Luhman 

and Ahn (2005) and White (2009). The authors pointed out that this theory 

seeks to compute a context-free estimate of causal strength for individual causal 

links, and to achieve that it requires many assumptions. Alternative causes 

(especially the unobserved ones) must work in very specific ways. They must be 

generative and may not interact with the target cause or target causes. It is not 

unreasonable to start from the assumption that the world is a messy place, 

disorganized and uncontrolled and idealized controlled situations such as these 

ones are few even in well-controlled experiments. Such required conditions are 

so restrictive that causal power could not be computed in the real world. These 

difficulties imply that an accurate computation of causal power as predicted by 

the theory requires a huge amount of accurate knowledge, much of which 

reasoners are unlikely to possess (Cheng & Novick, 2005).  

It is important to mention again that this rule-based model assumes that 

the noisy-OR integration rule is used to assess the causal impact of a compound 

of possible causes, whereas ∆P and PCM models used the linear integration rule. 

Apart from their different integration rules, the three models are formally very 

similar. 
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3.2. Associative models 

 

 

From the associative perspective, the processes involved in causal 

learning are analogous to (if not exactly the same as) those underlying simple 

conditioning in animal learning (Rescorla & Wagner, 1972). Following this 

account, people are assumed to form psychological associations between pairs 

of events during the learning phase, and then to base their judgments directly 

on the strengths of these associations. Generally when two events occur 

together, the relationship between them is strengthened. Conversely, when the 

events occur separately, the relationship between them usually weakens. The 

models usually use the notion of prediction error (a linear operator) in which 

the change in associative strength that occurs on each trial is a function of the 

difference between the pre-existing strength of an association and the maximum 

strength possible. The aim of this chapter is to discuss the main models of 

associative learning that exist today, and analyze in more detail the Rescorla-

Wagner (1972) model.  

 

 

3.2.1. Rescorla-Wagner Model 
 

 

The Rescorla and Wagner (1972) model has possibly been the most 

influential model in the psychology of learning since its appearance, 40 years 
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ago. It conceives learning as an adjustment between the expectations that the 

participant (or animal) has, and what actually happens. Learning occurs when 

there is surprise. Surprise understood here as the discrepancy between what the 

participant expects and what he or she actually experiences (Kamin, 1969). The 

greater this difference is, the larger the increment in learning (strengthening of 

the association), and vice versa. The second principle postulates that learning 

about a stimulus also depends on all the stimuli that are present in the situation, 

and not just on the presence of the stimulus of interest (target). What 

individuals learn on each new conditioning trial adds information to what they 

already knew before the trial began. The power of the relationship between the 

conditioned stimulus (CS) and the unconditioned stimulus is known as 

associative strength. After repeated association with an unconditioned stimulus, 

the CS comes to elicit the response previously generated by the unconditioned 

stimulus itself. The unconditioned stimulus (US) naturally, unconditionally and 

automatically triggers a response. For example, if I smell one of my favorite 

foods I may immediately feel very hungry, that is the US. But if I paired a 

neutral stimulus (a tone) along with the smell of the food several times, the tone 

alone would eventually trigger the response.  

According to the Rescorla-Wagner (1972) model, changes in the 

associative strength are described by Equation 5. According to this formulation 

of the delta rule, the associative strength (the strenght of the association 

between the mental representation of the cause and the mental representation 

of the outcome) of Cause i increases or decreases on trial t as follows: 
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∆𝑉𝑖𝑡 =  𝛼𝛽(𝜆𝑟𝑓𝑡 −  𝛴𝑉𝑡 − 1 )    Equation 5 

 

Where ∆𝑉𝑖𝑡 is the increment or decrement to 𝑉𝑖  on trial t, 𝛼 and 𝛽  are 

learning rate parameters with values from zero to one, and 𝜆𝑟𝑓𝑡 refers to the 

strength of the effect on trial t, which takes a value of one when the effect occurs 

and a value of zero when the effect does not occur. Finally, 𝛴𝑉𝑡 − 1 denotes the 

sum of the associative strengths of all potential causes that occurred on trial t. 

The change in associative strength is proportional to the difference between the 

expected status of the effect and the true status of the effect. Essentially, the 

Rescorla-Wagner (RW, 1972) model describes the popular delta rule that has 

been subsequently been used in connectionist approaches to contingency 

learning and judgment (Chapman, 1991; Gluck & Bower, 1988; Shanks, 1991; 

Shanks & Dickinson, 1987; Wasserman, Elek, Chatlosh, & Baker, 1993).  

This model was originally developed to explain classical conditioning 

phenomena, most particularly those involving the interaction of simultaneously 

presented stimuli, that could not been explained with previous learning 

theories. Thus, the Rescorla-Wagner model provided an explanation for 

blocking (Kamin, 1968), relative validity (Wagner, Logan, Haberlandt, & Price, 

1968; Wasserman, 1974), overshadowing (Pavlov, 1927), and conditioned 

inhibition (Pavlov, 1927). It also become apparent that many of the phenomena 

which at first sight were outside the model, could also be explained using 

alternative models that have assumptions in common with Rescorla-Wagner 

model. 
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It is important to note that at assymptote, assuming the presence of a 

constant context and equal betas for reinforcement and non reinforcement, the 

RW (1972) model computes ∆P (Chapman and Robbins, 1990; Danks, 2003; 

Tangen & Allan, 2003). Wasserman, Chatlosh, Elek & Baker (1993) generalized 

it to the more realistic case of unequal betas. 

 

3. 2. 2. Other associative models 
 

 

There are a number of effects that have important implications for 

theories of learning, and need to be explained before the rest of the models. 

Kamin’s (1969) blocking effect refers to failures of learning and/or at least the 

expression of classically conditioned responses when the CS is presented as part 

of a compound that includes another CS that has previously been used to 

establish the conditioned response. Lubow and Moore’s (1959) latent inhibition 

effect refers to the observation that a familiar stimulus takes longer to acquire 

associations (act as a CS) than a new stimulus, possibly because a lack of 

attention or because this stimulus has been deemed irrelevant. Another 

phenomenon that challenges learning theories is retrospective reevaluation 

(Dickinson & Burke, 1996; Wasserman & Berglan, 1998), where the established 

response to a stimulus is modified by later experience with other stimuli. 

Finally, the overshadowing effect demonstrates that when subjects are trained 

with a compound (composed of elements that may or may not differ in 

salience), there is less conditioning to a weak CS if it is combined with a more 

salient CS during conditioning trials.  

http://en.wikipedia.org/wiki/Stimulus_(psychology)
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There are other models of associative learning that, although not directly 

tested in this thesis, should be noted. The basic assumption of the Mackintosh 

(1975) model is that more attention is paid to stimuli that are better predictors 

of their outcomes or consequences, that is, relevant stimuli. The model is an 

attempt to respond to difficulties that the Rescorla-Wagner (1972) model had in 

accounting for phenomena like latent inhibition. It combines the assumptions of 

selective attention theories (Zeaman & House, 1963) with associative processes, 

emphasizing the role of the reinforcement in associative learning. This model is 

based on two fundamental assumptions. First, the associability of stimuli 

changes through the experience. Thus, the model explains latent inhibition 

(Lubow, 1973) assuming that the learning rate parameter for the CS (α) 

decreases with repeated presentations. Second, theories of selective attention 

explain overshadowing and blocking phenomena as a result of the competition 

between stimuli for control of attention. The attention the subject lends to 

stimuli (or its associability), changes with the experience that the subject has of 

such stimuli. Changes in stimulus associability are directly related to its 

predictiveness compared to the predictive power of other stimuli.  

By contrast, Pearce and Hall (1980) start from the supposition that the 

participant pays attention to stimuli that are not good predictors of their 

consequences (or there is not enough information to know if they are), to 

determine their relevance. Similar to Mackintosh (1975), this model focuses on 

the processing of the CS and emphasizes the role of attention in learning, but it 

has two unique features that differentiate it from the Mackintosh’s model. It 

proposes a new principle to determine the changes that occur in α and that lead 

to decreases in α when the CS is a good predictor of the US, and it also 
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completely abandons the idea that over the course of conditioning the 

effectiveness of the US changes. 

Most relevant to the experiments in this thesis is Pearce’s (1987) 

configurational model.  This model postulates that the presentation of a 

compound of two or more stimuli results in the formation of a unitary 

representational entity that is distinct from its elements. It is this entity that 

creates a unique association with the reinforcer. A compound stimulus is 

considered to be a single entity that is different from the individual elements 

that made it up.  Returning to the pink eyes example, this means that a 

combination of products, A and B for example, is processed as a unique 

configuration, named X, and not as individual elements A and B. Each 

configuration of stimuli is encoded independently, and participants learn about 

complete configurations, not about the stimuli that compose them. Because 

each configuration is represented independently, this implies that the 

associative strength of a compound does not necessarily have any relation to the 

associative strength of its elements (although it does in some versions, its 

similarity arises from the common elements in A and the AB compound). In 

other words, there may be no summation. And if there is summation, it does not 

have to obey either the linear or the noisy-OR rule. 

Van Hamme & Wasserman (1994) proposed a modified version of the 

Rescorla-Wagner model (1972), by assuming that the parameter that defines the 

intensity or associability of the CS (α) has two different values depending on 

whether the stimulus is present or absent in the trial. If the CS is present, the 

parameter (α) will be positive, but if the CS is absent, α will be negative, 

although usually smaller in absolute value than when the CS is present.  This 
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means that stimuli indirectly activated through within-compound-associations 

have a negative learning parameter, thus phenomena of retrospective 

reevaluation can be now explained. 

To sum up, it is important to note that all the associative models 

discussed so far (except the Pearce model) work under the assumptions of the 

linear integration rule, as they are variations based on the Rescorla-Wagner 

(1972) model, which used the linear integration rule, and the rest of the models 

have kept that idea. As mentioned above, in Pearce’s model a compound has its 

own representation, different from the representation of its elements. It is worth 

mentioning that Rescorla (1970) made a similar assumption claiming that a 

compound includes a configural element, i.e., A and B equal AXB, with X being 

the common configural element. When a novel compound is presented for the 

first time and has not been learned about it, that compound response is 

summated from what was previously learned about the elements that compose 

it. This generalization depends on how much the compound resembles the 

elements. Due to this rule of generalization, the configural view predicts that the 

strength of a given compound will approximate the average strength of each of 

its components in isolation. That is the main reason to explore the contribution 

of the different models of causal learning, and its relevance to the study of the 

way in which different causes should be added when presented in combination. 
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3.3. Bayesian Models 
 

 

Although I will not focus on Bayesian approaches throughout this thesis, 

our results have some important implications for the development of these 

models. This increasingly influential approach to causal induction proposes that 

subjects solve causal reasoning problems in a way consistent with the Bayesian 

formalism, originally developed in the field of computer science and statistics 

(Pearl, 2000; Spirtes, Glymour, & Scheines, 2001; Woodward, 2003; Sloman, 

2005; for an interesting review see Glymour, 2003). Bayesian models offer a 

formal framework for representing and reasoning about causal systems using 

causal models, a form of graphical representation of both deterministic and 

probabilistic causal systems (Hagmayer & Sloman, 2009).  

Probabilistic models aim to explain human cognition by appealing to the 

principles of statistics and probability theory, which dictates how an agent 

should act in conditions that involve some degree of uncertainty. A Bayesian 

model is a probabilistic graphical model that represents a set of random 

variables and their conditional dependencies via a directed acyclic graph. For 

example, a Bayesian network could represent the probabilistic relationships 

between causes and consequences, such as smoking and lung cancer. Given 

symptoms, the network can be used to compute the probabilities of the presence 

of various diseases.  

Different versions of the Bayesian approach propose different learning 

algorithms for inferring the causal structure underlying a given set of 

http://en.wikipedia.org/wiki/Graphical_model
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Conditional_independence
http://en.wikipedia.org/wiki/Directed_acyclic_graph
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covariation data. Bottom-up models focus on providing algorithms for inferring 

relationships based on statistical data in the absence of any other cues (Spirtes 

et al., 2001; Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004). By 

contrast, the “causal model” approach emphasizes the role of top-down domain-

general assumptions that constrain and inform the process of causal induction  

(Waldmann, 1996; Waldmann & Hagmayer, 2001). Finally, the “theory-based” 

approach focuses on the influence of domain-specific prior knowledge 

(Tenenbaum & Griffiths, 2003; Tenenbaum, Griffiths, & Kemp, 2006).  

Most importantly, Bayesian models can use the noisy-OR integration rule 

or the linear one, exactly as associative and rule-based models do. Which 

integration rule is used is a prior issue in the formulation of the models.  

Therefore, any evidence about which integration rule is more prevalent or 

intuitive for people has direct implications for the development of this type of 

models. 
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Chapter 4. Combination of causes in 

described situations  

 
 

 

The main objective of this thesis is to verify what type of integration rule 

was used by participants in a series of experiments that combined different 

cover stories, sets of probabilities, and the way information was presented. In 

the introductory chapters the two main integration rules have been presented, 

the linear summation and the noisy-OR rule. It was also mentioned that 

learning models differ in the integration rules they incorporate. 

Previous studies have compared the predictions of a learning model 

using a given integration rule against the predictions of other model using other 

integration rule. For example, studies in which the Power PC model’s 

predictions, which use the noisy-OR integration rule, are compared with the ΔP 

model’s predictions, using the linear integration rule. The results have been 
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mixed. On one hand, there are some studies indicating that the noisy-OR rule 

does not fit the data well (Allan, 2003; Perales & Shanks, 2007). On the other 

hand, other studies seem to show evidence that people's behavior conforms to 

the noisy-OR standard (Buehner et al., 2003; Griffiths & Tenenbaum, 2005; 

Holyoak & Cheng, 2011), but can also support alternative explanations (Lober & 

Shanks, 2000). 

In most of these experiments, participants were trained with a potential 

cause in a noisy context involving the presence of other potential effective 

causes of the same outcome. Each experiment starts with a learning phase 

composed of a series of experimental trials where the participant is learning the 

exposed information. In each of the trials, the subject is presented with 

information about the potential causes and the effect, following the model of the 

2x2 contingency table explained in Causal Learning Models section (Table 1). 

Specifically, a trial can have a present or absent potential causes, and the 

presence of the effect or not. In causal learning experiments every cell (a, b, c 

and d) is manipulated in order to expose participants to different experimental 

situations where causal learning models make different predictions. After the 

learning phase, the participants are asked to evaluate the influence of the target 

cause over the final outcome. The wording of the question varied slightly 

depending on the experiments, but usually was something like: To what extent 

does X produce Y? An important factor to consider when analyzing the 

responses of the participants is that they may have used a variety of strategies 

based on the available information, and we cannot conclude that the use of one 

completely excludes the representation of others. Even if participants’ answers 

match the linear integration rule in a particular experiment, this does not 
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demonstrate per se that they cannot represent power in terms of the noisy-OR 

rule. Any of these possible answers is a correct description of the action of a 

cause in the training situation and can be directly derived from a representation 

of power.  

In the experiments presented here a more direct test of whether 

participants spontaneously use the noisy-OR integration rule is used.  Previous 

experiments asked participants to infer the individual influence of a target cause 

from situations in which multiple causes simultaneously influence the outcome. 

Quite surprisingly, none of the experiments mentioned so far involving 

information about several candidate causes asked participants to predict the 

probability of the combined effect of some given potential causes. If this is done 

the noisy-OR rule makes very specific predictions. When people combine the 

influence of several causes, they should logically fall in between the value of the 

strongest individual cause and the linear sum of the probabilities of both causes. 

Although most studies explore the contrast between two different learning 

models (this issue is addressed in the Discussion), none of them were designed 

specifically to test if the participants used the linear or noisy-OR integration 

rule. The experiments of this thesis were not designed to compare causal models 

with different predictions, but to investigate the integration rules that are the 

basis of each of them. 

 In the present series of experiments, participants were provided with 

percentage information about the individual influence of different potential 

causes and asked to predict what their combined effect over the outcome would 

be when acting simultaneously. For example, imagine that we have information 

regarding the effect of two potential factors. Each of these causes produces the 
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effect half of the times it is present. What would be the probability of the effect 

be if both are presented simultaneously? Similar to our coin tossing game, each 

of the causes would produce the outcome half of the times, and therefore the 

probability of the outcome (getting heads) will equal .75. Participants’ 

inferences might be normative and approximate this prediction (following the 

noisy-OR rule). Alternatively, people might use other simpler heuristics when 

faced with this situation. If both causes are summed, participants might 

overestimate the probability of the outcome.  

Importantly, the noisy-OR rule is the normative description of the 

influence of several causes over the same outcome only if the participants 

assume that each of the causes independently affects the outcome, that is, if 

there are no interactions between causes. Models that use this rule, such as 

Cheng’s model (1997), argue that independence is a default assumption. In 

other words, people face reality assuming independence between causes, and 

this belief is only abandoned if strong evidence against it is observed. Contrary 

to this approach, it is possible that participants do not always assume 

independence, or assume independence not attending to the cover story. The 

main reason science fiction scenarios are used in all of our experiments is to 

encourage participants to assume independence between causes and ensure, as 

far as possible, that there is no prior knowledge that could contaminate the 

results.  

The first experiments have in common the same experimental structure, 

with only the set of specific probabilities varying across experiments. In general, 

participants received a written questionnaire in which information about a 

number of chemical substances with Greek names was given. These substances 
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had the capacity to produce pink eyes. This effect was chosen to ensure that the 

base rate of the effect in the absence of the candidate cues is zero. Each 

substance had different causative force, expressed as a percentage. The 

participants were asked to imagine that they wanted to have pink eyes. To do 

this, they must decide between two combinations of substances. The 

probabilities associated with the substances were designed so that we can 

discriminate between linear and noisy-OR integration rules. 

 

 

4.1. Experiment 1A 

 

4. 1. 1. Method 

Participants, procedure and design 

Twenty-six Psychology degree students from the University of Deusto 

volunteered to participate in Experiment 1A. All the materials were presented in 

booklet (see Appendix 1 in page 153 for the specific instructions for this 

experiment). Participants were asked to imagine that a number of chemical 

substances (Alpha, Beta, Delta, Gamma and Omega) had been discovered to 

have the ability to change the color of a person's eyes to pink. The assignment of 

substance names, and therefore their correspondent probabilities over the 

outcome (see Table 2), was partially counterbalanced following a latin-square 

design. The order in which the substances appeared on the sheet of paper was 

also counterbalanced. The set of probabilities for this experiment was as 

follows: 



62  In search of Rationality in Human Causal Learning 

 

 

Cue Cue in graphs Probability 

Alpha A 40% 

Beta B 40% 

Gamma C 80% 

Delta D 64% 

Omega E 0% 

 

 

Upon receiving this information, participants were told that different 

companies were selling different products containing different pairs of chemical 

substances. They were asked to choose which product they would buy if they 

wished to have pink eyes. Specifically, participants were asked whether they 

would prefer a product containing substances A and B together versus one 

containing substances C and E, and whether they would prefer a product 

containing substances A and B together to another compound containing D and 

E. This consisted on a simple forced choice, they had to choose one or the other. 

The order of these two questions and the order in which both compounds were 

presented in each question (AB first vs. CE/DE first) was counterbalanced 

across participants.  

Would the participants prefer a compound including A and B to one 

including C and E? These preference questions were designed to directly test the 

linear integration rule versus the noisy-OR integration rule, being the 

preference score the proportion of participants choosing one compound or 

Table 2. Set of probabilities for Experiment 1A. 
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another. If participants use a simple non-normative linear summation strategy 

to make this decision, they should be indifferent in the first preference question, 

because, from the Equation in Figure 1, the linear addition of A and B (40% + 

40% = 80%) and the linear addition of C and E (80% + 0% = 80%) are exactly 

the same. However, if participants use a noisy-OR integration rule they should 

prefer the compound CE, whose ability to produce the effect is 80% + 0% - 

(80% · 0%) = 80%, over the AB compound, whose ability to produce the effect is 

40% + 40% – (40% · 40%) = 64%. In the second preference question the 

participants were asked to decide between the compound AB and the compound 

DE (64% + 0%). In this case, if the participants use a linear integration rule, 

they are expected to choose AB. However, if they use a noisy-OR integration rule 

they are expected to be indifferent to both compounds. The pattern of 

predictions regarding the two integration rules for this experiment is depicted 

below. The calculated probabilities predicted by the integration rules for all the 

experiments can be found on page 105 (Table 9). 
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4.1.2. Results  

The choice pattern for this experiment is shown in Figure 5 and does not 

fit the prediction of the noisy-OR integration rule well. By contrast, it 

corresponds perfectly with the predictions of the linear summation rule, 

showing a preference for AB compound over DE (binomial test, p = .009). 

Although there appears to be a tendency to prefer the AB compound over CE, 

this trend is not statistically significant (binomial test, p= .327). 
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Figure 5. Preference for AB over CE (left), and preference for AB 

over DE (right) for Experiment 1A. The axis in 0.5 indicates 

indifference. Scores close to 1 indicate preference for AB compound, 

while ratings close to 0 indicate preference for CE/DE compounds. 

Figure 4. Pattern of preference results as predicted by the two 

integration rules for Experiment 1A, linear summation in the left 

versus noisy-OR integration rule in the right. 

* 
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4.2. Experiment 1B 

 
 

In Experiment 1A a significant tendency to respond according to the 

linear integration rule was observed. In the first preference question (AB vs CE) 

no significant differences were found, participants responded equally to both 

compounds, but in the second question (AB vs DE), there was a significant 

tendency to prefer the AB compound over DE, as the linear integration rule 

predicts. The results contradict the predictions of the noisy-OR integration rule. 

In Experiment 1B, the procedure and design were the same as the 

previous one, except that different values were assigned to the chemicals (see 

Table 3 below).   

 

  

Cue Cue in graphs Probability 

Alpha A 60% 

Beta B 65% 

Gamma C 97% 

Delta D 86% 

Omega E 0% 

Table 3. Set of probabilities on experiment 1B.  
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The new set of probabilities was designed so that the linear sum of some 

of the cues was higher than 100%. If a participant merely makes a spontaneous 

linear summation, thinking that it is a correct answer, it is possible that when 

calculating the sum but getting an outcome higher than 100% he or she might 

realize that this result is not normative, and decide to use a different strategy. 

Therefore these cues could promote the processing using the noisy-OR rule. It 

will be noted that the probabilities used in this experiment are not all regular 

multiples of ten or simple binary expansions (e.g., 64). This was done to 

discourage participants from falling back on a strategy of simple practice 

arithmetic calculations. 

The probabilities assigned to each cue were constructed in a way to 

discriminate between the two integration strategies, so that if the participants 

used the linear rule integration, they would prefer the AB compound in both 

preference questions. By contrast, the noisy-OR rule predict a preference for the 

CE over the AB compound; and indifference between AB and DE (see Figure 6). 

For all the specific calculated values, see Table 9 on page 105. Finally, to show 

that that the results do not rely on substances A and B having equal 

probabilities, substance A had a value of 60, and substance B 65. 
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4.2.1. Method 

Participants, procedure and design 

The experiment was completed by a sample of 43 students, 28 of them 

students of the Psychology MSc, and 15 from the Psychology Bachelor’s degree 

Programmes,  from Deusto University. The design and procedure were the same 

as in the previous study, except the probability set (shown in Table 3). The 

instructions (see Appendix 1) were also the same. The order of the questions and 

the order in which items appear on each question were counterbalanced. 

 

 

 

Figure 6. Pattern of preference results as predicted by the two 

integration rules for Experiment 1B.  
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4.2.2. Results  

The linear summation rule predicts preference for AB over CE and DE, 

whereas the noisy-OR rule predicts preference for CE over AB, and indifference 

between AB and DE. As can be seen in Figure 7, there were significant 

tendencies to prefer the AB compound over the CE compound, as predicted by 

the linear integration rule (binomial test, p=.014). In the second preference 

question, the results again fit perfectly with the predictions of the linear 

integration rule, participants preferred AB compound over DE (binomial test, 

p= .032). 

 

 
 

This experiment raises an obvious problem for the noisy-OR rule: the 

results are not consistent with what was expected from this integration rule. 

One factor that could be on the basis of this result is cue E which is 0%. 

Participants could perceive this cue not just as ineffective or without causal 

power, as intended, but as have the ability to inhibit the effect of other potential 
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Figure 7. Preference for AB over CE (left bar) and over DE (right 

bar).  The axis in 0.5 indicates indifference at the group level. 
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and effective causes which are paired with it in a compound. In this way, 

participants may prefer compounds with two ate least partly effective cues (AB 

compound). Taking this into account, in the following experiment the set of 

probabilities were again modified to see if the pattern of preference is 

maintained. 

 
 

4.3. Experiment 1C 
 

 

In the previous experiment a significant tendency to prefer the 

compound AB over the alternatives, CE and DE, was found. This result is 

predicted by the linear integration rule. As mentioned in Experiment 1B, one 

factor that may have promoted this result is the cause with 0% effectiveness. It 

is possible that participants believe that this cause is not just ineffective, but 

inhibits the causal power of the other causes paired with in a compound. 

Experiment 1c is designed to investigate that doubt. In this experiment 

there is no cause with 0% causal power (see Table 4). Thus, all the candidate 

causes have at least some generative causal power (above 0%). As in the 

previous experiment, there were no causes with identical probabilities. The 

patter of preference based on the different strategies is here again the same as in 

the Experiment 1A (see Figure 4, and see Table 9 for the calculated probabilities 

made by several integration rules). 

 

 



70  In search of Rationality in Human Causal Learning 

 

 

Cue Cue in graphs Probability 

Alpha A 60% 

Beta B 65% 

Gamma C 95% 

Delta D 80% 

Omega E 30% 

 

 

4.3.1. Method 

Participants, procedure and design 

The experiment was completed by a sample of 57 students from the 

Psychology degree, all coming from Deusto University. The design, instructions 

and procedure were the same as in the previous study, except the probability set 

(Table 4). As in the previous experiments, the order of the questions and the 

order in which items appear on each question were also counterbalanced. 

 

4.3.2. Results  

The linear summation rule predicts indifference between AB and CE, and 

preference for AB over DE. By contrast, noisy-OR rule predicts preference for 

CE over AB, and indifference between AB and DE. As shown in Figure 8, the 

results replicate those of the previous experiments, despite the change in the 

probabilities associated to each cause. A significant tendency to prefer AB 

Table 4. Set of probabilities for experiment 1C.  



Combination of causes in described situations 71 

 
 

compound over CE was found (binomial test, p= .008). This result is not 

predicted by either theory. In the second preference question, participants also 

seemed to prefer AB compound over DE (binomial test, p= .000). 

 

 

 

 

 

Removing the non-effective (0%) cause did not change the pattern of 

results obtained in Experiments 1A and 1B. It seems that the preference for the 

compound AB remains the same despite the change in the probability set. 

Therefore, the results of those experiments cannot be explained assuming that a 

0% effective cause was perceived as a preventive cause.  
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Figure 8. Preference for AB over CE (left bar) and over DE (right 

bar).  The axis in 0.5 indicates indifference. 
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4.4. Experiment 1D 

 

 

This experiment introduces a novel deterministic cause into the set of 

probabilities to see if the participants’ preferences remain the same. It should be 

easier for participants to reason according to the noisy-OR strategy if a cause is 

effective 100% of the time, because no combination of powers that are less than 

100% can be more effective than a combination of powers that includes a 100% 

cue. In this case, it should be clearer that 100% combined with anything is 

100%. Conversely, when two values below 100% are combined, the final result is 

less than 100%. This intuition is consistent with the logic of the noisy-OR, but 

not with the linear logic. Therefore, this should encourage noisy-OR style 

reasoning.  

According to some studies, the deterministic probabilities like 100% or 

0% are interpreted in a different way to other probabilities (Li & Chapman, 

2009; Kahneman & Tversky, 1979). In the case of the 100%, the cue is seen as a 

very salient reference point. The authors propose that this salient point receives 

special attention above its numerical weight. In the present experiment all 

instructions and procedure are the same as in the previous experiments, but the 

set of probabilities was modified, to include new potential cause with 100% 

causal power (see Table 5). We hypothesize that, following the reasoning of Li 

and Chapman’s study (2009), participants would pay more attention to the 

100% effective cause, resulting in a reversal of the pattern of results obtained in 

this experimental series. 
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Cue Cue in graphs Probability 

Alpha A 85% 

Beta B 40% 

Gamma C 100% 

Delta D 88% 

Omega E 25% 

 

 

The predictions of the two integration rules are the same in this 

experiment as in Experiments 1A and 1C, see Figure 4.  

 

 

4.4.1. Method 

Participants, procedure and design 

Forty five students from different schools at the University of Deusto 

volunteered for Experiment 1D. The design, instructions and procedures were 

kept the same as in previous experiments but the probabilities shown in Table 5 

were used. The preference questions and the order of the elements within the 

questions were counterbalanced. 

 

 

 

Table 5. Set of probabilities on experiment 1D.  
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4.4.2. Results  

In this experiment, linear integration rule predicts indifference between 

AB and CE, and preference for AB when in contrast with DE. Noisy-OR rule 

predicts preference for CE over AB, and indifference between AB and DE 

compounds. As can be seen, the results fit with the predictions of the linear 

integration rule. Although at first glance it seems to be a tendency to prefer CE 

over AB, this tendency was non-significant (binomial test, p= .072), so in this 

question participants seems to be indifferent between the two combinations. In 

the second question, participants significantly preferred the AB compound over 

DE (binomial test, p= 0.16).  
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Figure 9. Preference for AB over CE (left bar) and over DE (right 

bar) for Experiment 1D.  The axis in 0.5 indicates indifference. 
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One could argue that with more participants in the sample, the tendency 

to prefer CE to AB would become significant. If that were the case this would 

possibly indicate that, regardless of the integration rule participants are 

following, when they are indifferent between two compounds they can adopt the 

other integration rule to “maximize” their choice of winning and avoid 

uncertainty or indifference. So, if a given participant follows the linear 

integration rule (and it should be mention that only about 70% of the people 

made that choice), he or she might be very certain of the AB vs. DE decision 

(preferring the former). But in AB vs. CE, the linear integration rule predicts 

indifference, so in order to make a choice, the participant could follow the 

predictions of the noisy-OR rule and choose the CE compound. And vice versa, 

if a participant follows the noisy-OR integration rule, he/she will be sure of 

choosing CE over AB, but in the second preference question, in which noisy-OR 

predicts indifference, the participant can change his/her strategy in order to 

make a decision, preferring DE although it is not predicted by the noisy-OR 

rule. In any case, it can be argued that there was little evidence for this 

prediction in the previous experiments. So this idea that when a strategy invites 

indifference in a given preference question then participants used the other does 

not accurately explain the previous results. 
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Chapter 5. Summation in adolescents 
 

 

 

All previous experiments were conducted with university students, and 

mostly with Psychology students. These students are trained in Statistics and 

Probability, and it is possible they may be using that knowledge to perform the 

experiments. It is therefore possible that the previous results are not 

representative of the performance of the general population, untrained in 

Probability Theory. In this case, the aim of these experiments was to check if the 

results of the previous experiments also hold for with 13 year old students. This 

chapter includes replications of Experiments 1A and 1B using early adolescent 

children. 
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5.1. Experiment 2A 

 

5.1.1. Method 

Participants, Procedure, and Design 

Thirty-eight secondary school students participated in Experiment 2A. All 

the participants were 13 years old, 24 were male and 14 female. The procedural 

details and materials were exactly the same as in Experiments 1A (see Table 2). 

 

 

5.1.2. Results 

As in Experiment 1A, the linear summation rule predicts indifference 

between AB and CE, but a preference for AB over DE. The noisy-OR rule 

predicts preference for CE over AB, and indifference between AB and DE. As 

can be seen in Figure 10, the results of Experiment 2A were very similar to those 

of Experiment 1A, which was based on the same probability set. Although the 

graph seems to suggest otherwise, the preference for AB over CE did not reach 

statistical significance (binomial test, p = .143).  However, participants 

preferred the compound AB to the compound DE (binomial test, p= .014) so, 

again, these results are at odds with the predictions of the noisy-OR rule, and fit 

the linear integration rule.  
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5.2. Experiment 2B 
 

 

5.2.1. Method 

Participants, Procedure, and Design 

Twenty-eight secondary school students participated in Experiment 2B. All 

were aged 13, and were 15 male and 13 female. The set of probabilities used is 

depicted in Table 3. The instructions, procedure and materials were exactly the 

same as in the experiment 1B. 
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Figure 10. Preferences for experiment 2A with secondary school 

students.  
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5.2.2. Results 

In this experiment, the linear rule predicts preference for AB compound 

over CE and DE, whereas the noisy-OR rule predicts preference for CE 

compound over AB, and indifference between AB and DE. The results of 

experiment 2B are shown in Figure 11. Participants preferred the compound AB 

to the compound CE (binomial test, p= .013), and also preferred compound AB 

over DE (binomial test, p= .004). This demonstrates that the results of the 

previous set of experiments generalize to other populations, and not rely on 

specific attributions of Psychology students. 

 

  

 

 

 

The pattern of preference choice in AB vs. DE is at odds with the 

predictions of the noisy-OR integration rule again, but exactly as predicted by 
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Figure 11. Preferences for experiment 2B with secondary school 

students.  
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the linear integration rule. The preference for AB over CE fits again with the 

predictions of the linear integration rule. 
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Chapter 6. Summation under 

alternative scenarios and information 

formats 
 

 

 

 

It has become apparent that the way information is provided to 

participants can have a large effect on the patterns of behavior observed in 

decision making (Barron & Erev, 2003; Hertwig, Barron, Weber, & Erev, 2004) 

and judgment domains (Fiedler, Brinkmann, Betsch, & Wild, 2000). The latest 

studies in this field (Bergert & Nosofsky, 2007; Bröder & Schiffer, 2003, 2006; 

Bröder & Newell, 2008; Platzer & Bröder, 2012) indicate that it is not the 

presentation format per se, but the accessibility of the information as 

determined by the presentation format which most influences which strategies 

are employed. Up to this point the information in my experiments was provided 

to the participants in form of probabilities. However, people do not always 

correctly use information presented as probabilities or percentages (Sloman, 

Over, Slovak, & Stibel, 2003).  
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Gigerenzer and Hofrage (1995) made a strong claim for an evolutionary 

approach to ecological rationality, proposing that humans evolved cognitive 

algorithms for making statistical inferences that are more prone to reason 

correctly with frequencies rather than probabilities. This argument relies on 

how the organism acquires causal information about the environment, by 

natural sampling of event frequencies. Previous research has shown that, from 

primates and lower animals to neural networks, all systems are highly sensitive 

to changes in the frequency of events (Brunswick, 1939; Gallistel, 1990; Real, 

1991; Shanks, 1991), which seem to be encoded easily and automatically (Hasher 

& Zacks, 1984; Hintzman, 1976). By contrast while people directly observe 

frequencies they must compute probablities from experience. Indeed, as 

mentioned in the Introduction, probabilities were late inclusions into 

mathematics with the development of mathematical probability theory  

(Gigerenzer, Switjink, Porter, Daston, Beatty, & Krliger, 1989).  

To explore the impact of this factor, Experiment 3A included information 

presented in a frequency format (e.g., participants were told that when cause A 

was present the effect occurred in 160 out of 200 occasions, instead of telling 

them that produced the effect 80% of the time). In Experiment 3B pie charts 

were used to present the probabilities in a graphical manner. Experiment 3C 

used graphical banners to present the numerical information. Finally, 

Experiment 3D used a cover story involving a coin tossing game with 

percentages. 

Additionally, it is important to ensure that the previous results would 

generalize to other scenarios. Therefore three new cover stories were included in 

this series of experiments, one for Experiments 3A and 3B, a different one for 

Experiment 3C, and finally, Experiment 3D used a cover story based on a coin 
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tossing game. Testing the generality of the previous results is not only important 

for methodological reasons, but it can also rule out alternative explanations. The 

results of our previous experiments are inconsistent with the predictions of the 

noisy-OR integration rule, but they can be accommodated assuming that the 

participants perceived an interaction between the elements, so that the effect of 

the combination might have a different outcome than the sum of its elements. 

Although according to the Power PC theory, that follows the noisy-OR 

integration rule, people naturally assume by default that causes do not interact 

with each other and this basic premise would only be rejected when there is 

strong disconfirming evidence. Otherwise, the problem of causal induction 

would become computationally intractable. Nonetheless, it is possible to assume 

that prior knowledge of our participants about how medicines and chemical 

substances work in general has led them to doubt that the various chemicals 

used in previous experiments do not interact with each other – so there actions 

that may be not independent. Daily experience shows that often, the effect of a 

drug may interact with other drugs. If the participants have assumed that 

something like this might be happening, then previous findings may not be valid 

tests of the models based on the noisy-OR integration rule.  

 

 

6.1. Experiment 3A 
 

 

A new cover story inspired by a short science-fiction story that we expected 

most participants to be unfamiliar with (Chiang, 2002) was used. In this cover 
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story, the participants were asked to imagine that scientists have discovered a 

treatment that makes people insensitive to physical beauty. Some people would 

demand this experimental treatment to encourage them to be more sensitive to 

other people’s inner beauty than to their physical beauty (see Appendix 2 in 

page 155 for further information). As in the previous pink-eyes experiments, 

participants were given information about the effectiveness of five different 

proteins that could produce this effect. In this experiment the probabilistic 

information was given as frequencies (e.g., “120 out of 200” people injected with 

protein Alfa stop perceiving physical beauty). Next, participants were asked to 

report which compounds they would choose, AB versus CE and AB versus DE, if 

they wished to stop being influenced by the physical appearance of other people. 

 

 

6.1.1. Method 

Participants, Procedure, and Design 

Fifty-three undergraduate psychology students from University of Deusto 

volunteered to participate in Experiment 3A, 43 female and 10 male. The set of 

frequencies and materials used this experiment was the same as the one used in 

Experiment 1C (see Table 4).  
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Cue Cue in graphs Probability 

Alpha A 60% 

Beta B 65% 

Gamma C 95% 

Delta D 80% 

Omega E 30% 

 

 

6.1.2. Results  

The choice pattern depicted in Figure 12 is similar to that of previous 

experiments. Contrary to the predictions of the noisy-OR integration rule, the 

participants preferred the compound AB to the compound DE (binomial test, p 

< .001). In this experiment the participants also preferred the compound AB to 

the compound CE (binomial test, p= .005), although this choice pattern is not 

predicted by either the noisy-OR or the linear integration rule.  

 

Table 6. Set of probabilities on experiment 3A.  



88  In search of Rationality in Human Causal Learning 

 

 

  

 

These results strengthen the idea that the data observed in previous 

experiments is not attributable to either peculiarities of the cover story or to the 

use of probabilities instead of frequencies. 

 

 

6.2. Experiment 3B 
 

 

There is an additional way to create probability versions that reveals the 

information of the experiment: to include a graphical representation that shows 

the probabilistic information. This technique was used in previous experiments 

in causal reasoning domain (Cosmides & Tooby, 1996; Sloman et. al, 2003; 

Yamagishi, 2003). Despite the widespread use of graphical displays and 

statistical graphs, the knowledge of how people read and interpret graphs is 
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Figure 12. Preferences for experiment 3A with frequency format.  
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relatively meager. Hollands and Spence (1998) indicated that the bar graph 

most commonly used is not an effective display for judging proportion. Divided 

bars, reference bars, and pie charts generated generally better performance 

across their experiments. We included pie charts in this experiment because this 

display produced the smallest absolute error values. Regardless of some critics 

(Cleveland, 1985; Macdonald-Ross, 1977; Tufte, 1983), the accumulated 

evidence indicates that the pie chart is an effective format for judgments of 

proportion and yields accuracies as good as or better than other graph types for 

that task (Eells, 1926; Hollands & Spence, 1992; Simkin & Hastie, 1987; Spence, 

1990; Spence & Lewandowsky, 1991).  

In Experiment 3B the information was given by means of pie charts (see 

Figure 13). A pie chart is a circular chart divided into sectors, illustrating 

numerical proportion. In a pie chart, the arc length of each sector 

is proportional to the quantity it represents.  In this experiment only two 

numerical proportions are depicted in each chart, corresponding to the 

probability of the effect and the complementary probability of no-effect for each 

of the protein treatments. The scenario used in this experiment was the protein 

treatment to stop perceiving physical beauty that was used in Experiment 3A. 

After seeing this information, the participants were asked to say which 

compounds they would choose to stop perceiving physical beauty. 

 

http://en.wikipedia.org/wiki/Circle
http://en.wikipedia.org/wiki/Chart
http://en.wikipedia.org/wiki/Circular_sector
http://en.wikipedia.org/wiki/Arc_length
http://en.wikipedia.org/wiki/Proportionality_(mathematics)
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6.2.1. Method 

Participants, Procedure, and Design 

34 undergraduate students from different programmes volunteered for the 

experiment, 32 female and 2 male. The set of probabilities and materials are the 

same as in the previous Experiment 3A, and are the same as those used in the 

experiment 1C (see Table 4).  

 

 

6.2.2. Results  

The pattern of results, depicted in Figure 14, is exactly the one predicted by 

the linear integration rule. In contrast to the predictions of the noisy-OR rule, 

the participants preferred the compound AB to the compound DE (binomial 

test, p= .003). They showed no particular preference of either compound in the 

second preference question (binomial test, p = .392).  

 

Effect

No effect

Figure 13. Pie chart used in experiment 3B to express the numerical 

information. The white part represents no effect of the given protein, and 

the black one denotes effect (stop perceiving the physical beauty in this 

scenario). 
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 What can be concluded from this experiment is that using a graphical 

format to depict the probabilistic information did not change the pattern of 

behavior observed so far in this experimental series. Participants consistently 

differ from the predictions of the noisy-OR integration rule, preferring the 

compound AB over the compound DE.  

 

 

6.3. Experiment 3C 
  

 

In this experiment a new cover story derived from the Hyperion stories, 

described in the Introduction, was used. The two previous cover stories involved 
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Figure 14. Results for experiment 3B with pie charts. 
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proteins, chemical substances and treatments, so it is possible that participants 

still perceiving interaction between the causes or use their previous knowledge 

about chemicals in order to derive their predictions. In this study, four new 

features were included: a new cover story, a new format for presenting 

information (graphical banners), preference questions involving a compound 

versus one candidate cause alone, and new questions involving the numerical 

judgment of the combined effectiveness of compounds involved in the 

preference questions. 

 

6.3.1. Method 

Participants, Procedure, and Design 

Thirty participants volunteered for experiment 3C. All of them were from 

different courses, mainly engineering and medicine from the University of the 

Basque Country. 

A new cover story related to the science fiction scenario presented in the 

Introduction was included. Participants were presented with an alien world 

scenario in which they had to learn about several risk factors or dangers that 

were more or less likely to kill humans. There were five different dangers 

represented by different names and ways of dying. Some of them always or 

never kill the explorer, whereas others sometimes were fatal and sometimes not 

(see Appendix 4 in page 159 for further information). After seeing this 

information, displayed as graphical banners based on frequencies of 24 (see 

Figure 15), participants answered preference questions, involving the choice of a 

route that contained one or two of the previously trained dangers. In this 

experiment, if participants perceive A and B as a very effective (the causes kill 
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them), then they should choose the other alternative. For this reason, we need 

to reverse the interpretation of the preference data to make the results more 

directly comparable with those of the previous experiments.  

These explorers ate poisonous 

lichen from the surface of the 

planet 

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       
 

 
 

 
 

 
 

       

 
 

 
 

 
 

 

       
 

 
 

 
 

 
 

 

 

 

 

It is important to highlight that the results in the previous experimental 

series are quite consistent not only with the linear integration rule, but also with 

an averaging strategy that has not been mentioned thus far. According the 

averaging strategy, the causal impact of a compound would be equal to the 

average of the causal impact of its elements. Although the binary decision test 

used through the previous experiments was well designed for the purpose of 

contrasting linear and noisy-OR predictions, taking this issue into account we 

Figure 15. Graphical banners with information about the chances of 

living and dying out of 24 for experiment 3B with Hyperion 

scenario. 
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decided to introduce changes in the experimental design to test if the 

participants used some form of averaging strategy. In Experiment 3C we 

requested the same choice pattern data for the compounds but also we include 

the ratings of the probability of the effect given AB, CE and DE. Additionally, we 

asked participants to choose between a compound versus a cue alone, 

specifically between AB versus C and versus D. As depicted in Table 8, E 

element lacks any power to produce the effect (i.e., the probability of the effect 

in the presence of cue E is zero). Hence, removing it from any compound should 

have no impact on pattern choices: The participants' behavior should be the 

same when deciding between AB and CE and when to deciding between AB and 

C. Nevertheless, if removing this element has an impact on the pattern of 

choices made by participants, this might be of great interest to understand the 

strategy they used.  

The linear and the noisy-OR rules predict no effect of adding the neutral 

compound E. If participants were linearly summing the independent 

probabilities, then they would still prefer the combination of causes over the 

cause alone. By contrast, if they were averaging the two elements within a 

compound, with this new experimental design (see Table 7), they would prefer 

the stronger cause alone over compounds of it and a weaker cause. Finally, 

probability ratings about the combination of causes were included in order to 

compare those estimates with the preference pattern. 

  



Summation under alternative scenarios and information formats 95 

 
 

 

Cue Probability Number of 

outcomes 

Preference 

Test 

Predictions for 

compounds 

A 50% 12/24 AB vs CE AB? 

B 50% 12/24 AB vs C CE? 

C 75% 18/24 AB vs DE DE? 

D 100% 24/24 AB vs D  

E 0% 0/24   

 

 

 

 

 

6.3.2. Results 

The preference responses for Experiment 3C are depicted in Figure 16. To 

facilitate comparison with the previous experiments in which the outcome was 

desired, the choices made by participants in this experiment (in which the 

outcome, death, was not desired) were reversed. Participants did not think that 

the combination of two causes with a 50% efficacy was more dangerous than the 

compound of a 75% effective cause and a 0% effective cause (AB vs. CE, 

binomial test, p=.585). Moreover, they thought the combination of the 100% 

effective cause and the 0% effective cause was more dangerous than the 

combination of the two 50% effective causes (AB vs. DE, binomial test, p<.001). 

The participants show indifference between the two 50% effective causes and 

the 75% cause (AB vs. C alone, binomial test, p=.099), and they significantly 

Table 7. Set of probabilities and experimental design for experiment 

3C, in Hyperion scenario using graphical banners. 
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prefer the 100% effective cause over the two 50% effective causes (D over AB, 

binomial test, p<.001). This pattern of results is consistent with the noisy-OR 

integration rule. It is important to note that the pattern of choices was not 

influenced by the presence of the 0% cause, suggesting that in this experiment 

participants did not average the effect of several causes.  

 

  

 

 

 

As mentioned above, participants were also asked to rate the probability of 

the effect (dying) given several combinations of the causes A-E. Figure 17 shows 

the mean ratings of the probability of the effect given the combinations AB, CE, 

and DE. It is quite clear that these means are quite consistent with the noise-OR 

rule. Participants judged the combination of two 50% causes (AB) to generate a 

probability of around the expected 75% and likewise made similar judgments of 
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Figure 16. Choice results for Experiment 3C in Hyperion scenario 

using graphical banners. 
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the combination of a 0 and 75% probability cause (CE). Finally the judgments of 

the combination of the 100 % cause and the 0% (DE) cause were much higher. 

 

 

 

 

 

Although these mean judgments are consistent with the noisy-OR rule they 

are not clear on the possible rules that each individual might use. For example a 

mean judgment of 75% for the AB compound might occur because everyone 

made judgments around 75% or because half of the participants summed the 

probabilities (50% +50% = 100%) while the other half chose one of the 

probabilities (here 50%). To shed some light on this we plot the number of 

people making judgments of individual frequencies or ranges of frequencies in 

the next three figures. Ranges are sometimes relevant because, while the noisy-

or rule makes precise computational predictions (e.g. For AB = .5 + .5 - .5x.5 = 

.75), people may not make the exact computation but may reason that the result 

of two independent causes is somewhere between the larger of the two and their 
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Probability ratings for compounds

Figure 17. Probability ratings for the three compounds in Experiment 3C 

with Hyperion scenario using graphical banners. 
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sum. So in this case a range between 50% and 100% might be relevant, although 

obviously less extreme values in the range are more convincing. Figure 18 which 

plots judgments of the AB compound with its expected value of 75% provides 

the most valuable insight into the strategies used by participants. It is important 

to note that, although the range depicted in the graph runs between 50 and 100, 

all the participants responded in this range gave 75% AB probability rating. As 

can be seen, most participants in this Experiment thought that the probability of 

the effect when two 50% effective causes were presented was 75%. This is 

consistent with the noisy-OR integration rule. Note, however, that one third of 

participants gave ratings equal to either 50 or 100, which are the values from 

the averaging and linear integration rules, respectively. Furthermore, 4 of the 

participants gave ratings that were outside the 50 to 100 range. Even in this 

experiment, the only one in the whole thesis that favors noisy-OR-based pattern 

of choices, only a small majority of participants adjusted their judgments 

predictions the noisy-OR integration rule. 
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Figure 18. Judgment frequency for AB (50% + 50%) in Experiment 3C.  
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In Figure 19, probability judgments to compound CE are represented. It 

should be noted that the majority of people believed that the effect of the 

combination of a 75% effective cause plus a 0% effective cause is equal to the 

effect of the 75% effective cause in isolation. This is predicted by the linear 

integration rule and the noisy-OR rule but not the averaging heuristic. Although 

there are participants giving probability predictions below 75, it is unclear 

whether these participants were averaging the contribution of both causes 

because ratings were not always close to 37.5.  

 

 

 

Finally, Figure 20 shows the probability predictions for compound DE. 

The majority of people correctly chose 100% for this compound. But again there 

is a nontrivial amount of people who did not do this. 
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Figure 19. Judgment frequency for CE (75% + 0%) in Experiment 3C.  
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6.4. Experiment 3D  
 

 

It is always possible that in each of our previous experiments participants 

assumed the causes were not independent and this precluded the noisy-OR 

strategy so in Experiment 3D we simply asked people to make judgments in the 

classic independent binary probability scenario – coin tossing. Participants were 

asked to imagine that they were playing a coin tossing game with three different 

biased coins. In this game, they would win if they obtained at least one head. 

They were told that would win regardless of whether they got one or two heads 

in the two coin tosses. Two heads are not better than one here. The three coins 

turned up heads 40%, 80%, and 64% of the times, respectively (see Appendix 3 

in page 157 for further information). In the first test question participants were 
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Figure 20. Judgment frequency for DE (100% + 0%) in Experiment 3C.  
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asked to choose whether they would prefer to toss the coin with the 40% chance 

of winning twice or to toss the coin with the 80% chance of winning once. In the 

second test, they had to choose whether they preferred tossing the 40% coin 

twice or tossing the 64% once. The noisy-OR rule predicts a probability of (.4 + 

.4 - .4X.4 = .64). So participants should prefer the single toss of the 80% coin 

and be indifferent with the 64% coin. After making these decisions, participants 

were asked to rate the probability of winning if they tossed the 40% coin twice. 

 

 

6.4.1. Method 

Participants, procedure and design 

 

Forty-nine participants volunteered for experiment 3D. All of them were 

from different programs, mainly Psychology, from McGill University. See Table 

8 below for the probabilistic information and experimental design for 

Experiment 3D. 

 

Cues Probabilities Preference 

Test 

Predictions for 

compounds 

A 40% A twice vs B A twice? 

B 64% A twice vs C  

C 80%   

 

 

 

 

Table 8. Set of probabilities and experimental design for experiment 

3D with coin tossing game scenario. 
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6.4.2. Results 

The pattern of choices made by participants in Experiment 4D (Figure 21) 

was at first sight totally consistent with the predictions of the noisy-OR rule: 

They preferred to toss a single coin with 80% chance of winning over a double 

toss with a coin with 40% chance of winning. They were indifferent to the choice 

between tossing the 40% coin twice or the 64% coin once, which is also 

consistent with the noisy-OR rule.  

 

 

 

 

Figure 22 depicts the frequencies of the numerical ratings of the 

probability of winning tossing the 40%-winning coin twice. Their numerical 

ratings of the probability of winning if they tossed the 40% coin twice are 
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represented in Figure 22. These ratings are in stark contrast with the pattern of 

decisions depicted in the previous graph. If participants were actually following 

the noisy-OR rule, one would expect most of ratings to fall in the range between 

40 and 80. However, only 8 of the 49 participants gave responses within that 

very conservative range. Instead, 34 responded with either 40, which is 

consistent with either an averaging strategy or ‘choose one or the other strategy’ 

(as both predict 40%), or 80, which is the outcome if they are linearly 

summating both cues. According to the probability ratings in this a classical 

independent probabilities scenario, most participants are following either the 

averaging strategy or the linear integration rule and certainly not the noisy-OR 

rule even though the mean probability ratings are consistent with this. But, 

interestingly, when represented in a choice graph, these data indicate that the 

participants may be responding according to the predictions of the noisy-OR 

rule, which is not correct. These surprising results show that a pattern of choices 

that resemble a normative strategy might actually be the consequence of 

different, non-normative strategies used by different participants.  
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People often have many strategies for solving a single problem.  Averaging 

data generated by use of different strategies carries the same risks as averaging 

data generated by different individuals (Siegler, 1987). Just as data aggregated 

over people may not accurately reflect the behavior of any given person (Estes, 

1956), data aggregated over different causal strategies may not accurately reflect 

the characteristics of any strategy.        
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Figure 22. Probability ratings when coin 40% is double tossed. 
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Compound Cause 1 Cause 2 Linear Noisy-OR Average 

 

Experiments 1A, 2A, 3D 

AB .40 .40 .80 .64 .40 

CE .80 .00 .80 .80 .40 

DE .64 .00 .64 .64 .32 

Experiments 1B, 2B 

AB .60 .65 1.25 .86 .625 

CE .97 .00 .97 .97 .485 

DE .86 .00 .86 .86 .43 

Experiments 1C, 3A, 3B 

AB .60 .65 1.25 .86 .625 

CE .95 .30 1.25 .965 .625 

DE .80 .30 1.10 .86 .55 

Experiment 1D 

AB .85 .40 1.25 .91 .625 

CE 1.00 .25 1.25 1.00 .625 

DE .88 .25 1.05 1 .565 

Experiment 3C 

AB .50 .50 1.00 .75 .50 

CE .75 .00 .75 .75 .375 

DE 1.00 0.00 1.00 1.00 .50 

Table 9. Predictions made by several integration rules for all the 

experiments. 
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Chapter 7. General Discussion 

 

 

 

‘Not to be absolutely certain is, I think, one of the essential things in 

rationality.’ 

Bertrand Russell (1949) 

 

 

7.1. Overall pattern of results 

 

The results of the experiments in this thesis present an interesting 

picture. In Chapter 4, Experiment 1A explored the pattern of choices of 

participants with a given probability set using the pink-eyes scenario. The 

results perfectly fit the linear integration rule. In Experiment 1B, a new 



108  In search of Rationality in Human Causal Learning 

 

probability set was designed in a way that the sum of some cues is higher than 

100%, to see if that change in the experimental design could promote a choice 

pattern consistent with the noisy-OR integration rule, but again the results were 

consistent with the linear predictions. Experiment 1C removed the 0% effective 

cause to avoid any particular effects of perceived inhibition associated with the 

non-effective cue. The results were as predicted by the linear integration rule. 

Finally, in Experiment 1D the introduction of a 100% effective cause made no 

difference to the pattern of results in this Chapter, and again participants 

responded according to the linear integration rule. 

Chapter 5 explored causal reasoning in adolescents to see if the previous 

results could be due to some peculiarities of the university level participants, in 

the experiments in Chapter 4, who were mostly Psychology students trained in 

Probability. Experiment 2A replicated Experiment 1A with a sample of 

adolescents, and the same results favoring the linear strategy were obtained. 

Experiment 2B replicated Experiment 1B with another equivalent sample. The 

results where again consistent with the linear integration rule. 

Chapter 6 introduced numerous changes in the cover stories and the 

probabilistic information formats. In Experiment 3A the information was 

presented as frequencies, and a new cover story was used to ensure the 

generality of the previous findings. The results were partially consistent with the 

linear integration rule, and did not fit the predictions of the noisy-OR strategy. 

In Experiment 3B pie charts were used to present the probabilistic information, 

using the same cover story as in Experiment 3A. The results were exactly as 

predicted by the linear integration rule. Experiment 3C included a number of 

changes: A new cover story, the Hyperion scenario, was used. Also, graphical 
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banners based on frequencies of 24 were used as the information format. 

Finally, new questions involving the choice between a compound and a single 

cue alone were included to explore if the participants used some form of 

averaging strategy. Furthermore, probability ratings of the compounds were 

requested to provide more information regarding what strategies the 

participants used. The choice pattern in Experiment 3C was consistent with the 

noisy-OR integration rule, but the probability judgments did not always fit this 

rule. Experiment 3D employed a coin tossing game as a cover story, and the 

probabilistic information was given as percentages. In this experiment, the 

choice pattern was as predicted by the noisy-OR rule, but  the probability 

judgments of the compounds suggested that the pattern of preferences 

consistent with noisy-OR strategy might actually be the consequence of different 

non-normative strategies (e.g., linear summation and averaging strategies) used 

by different participants. To sum up, this thesis explored a variety of probability 

sets, cover stories, and information formats to test if the participants behave 

according to the normative noisy-OR integration rule, or, by contrast, they 

employ non-normative strategies as the linear integration rule or an averaging 

strategy. Participants in the vast majority of the experiments throughout this 

thesis responded as predicted by the linear integration rule. 

Our experimental work suffers from some problems. It is impossible to 

know what factor is the key one to modify the participants’ strategies. The 

presentation format and the causal scenarios have not been independently 

manipulated, so, in a basis of these results, both the normative models and the 

heuristic approaches still have arguments supporting their views. One of the 
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next steps to do would be to test these factors in isolation to see which of them is 

responsible for any changes in the behavior of participants.   

Another important issue to be addressed is the lack of consistency between 

the choice and probability patterns. It seems to be pretty obvious that asking 

simultaneously preference choices and probability judgments can promote 

different rules, even in the same participant and with the same material. At this 

point, the factors that make people choose one rule over another remain 

unclear. 

 

 

7.2. Formats of presentation 

 

It has been widely claimed that people are much more competent in 

reasoning about frequencies than probabilities (Cosmides & Tooby, 1996; 

Gigerenzer & Hoffrage, 1995). Despite the extensive empirical evidence offered 

by these two studies, other authors have demonstrated that the use of 

frequencies rather than probabilities does not in itself make reasoning problems 

easier to solve when confounding factors were eliminated (Barbey & Sloman, 

2007; Evans, Handley, Perham, Over, & Thompson, 2000; Griffin & Buehler, 

1999; Neace, Michaud, Bolling, Deer, & Zecevic, 2008; Macchi, 2000; Mellers & 

McGraw, 1999; Reyna & Mills, 2007; Sloman et al., 2003; Waters, Weinstein, 

Colditz, & Emmans, 2006). This research shows that the participants’ responses 

to such tasks are strongly influenced by subtle variations in the presentation of 
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task information. Thus, there is little evidence to support the idea that 

frequencies per se, when not confounded with other factors, are more natural or 

easier to comprehend than percentages or other ‘normalized’ formats. Despite 

this mixed evidence, different presentation formats was an important factor to 

be tested within the context of our experiments.  

 The results obtained from different presentation formats did not 

significantly affect the results in the experiments throughout this thesis. A 

frequency format to depict the probabilistic information was used in 

Experiment 3A, and the results were in line with the linear integration rule. 

Similarly, Experiment 3B used pie charts to express the probability set, and the 

participants again behaved according to the linear summation rule. The last two 

experiments might be of more interest to this issue: In Experiment 3 the choice 

pattern changed from the linear to the noisy-OR integration rule, but not only 

was the presentation format changed (to graphical banners) but also a new 

cover story regarding the Hyperion world, with some potential dangers and an 

outcome of dying was used. Thus, we cannot conclude that the changes in choice 

patterns are due solely to the presentation format. It is important to mention 

that several of the experiments reported by Patricia Cheng and colleagues used 

this type of graphical banners, with different results to our experiments 

(Buehner, Cheng, & Clifford, 2003; Carroll & Cheng, 2010; Cheng & Buehner, 

2012; Cheng, Novick, Liljeholm, & Ford, 2007; Liljeholm & Cheng, 2007, 2009; 

Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008; Novick & Cheng, 2004). 

Also, when analyzing the probability ratings given to the compounds, it is 

apparent that the participants used a mix of strategies, most of which were not 

consistent with the noisy-OR strategy rule. Finally, and in line with this previous 
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finding, in Experiment 3D the information was presented as percentages, as in 

the four experiments in Chapter 4 which favored linear integration rule, but in 

this experiment the pattern of choices resembled a noisy-OR normative 

strategy. In this experiment the format did not change, the only novelty was a 

new cover story involving a coin tossing game. Hence, if anything, this finding 

could suggest that the cover stories employed in causal reasoning studies have 

more impact in the pattern of choices made by participants than the way the 

information is presented. It is important to mention that in this experiment 

although the choice pattern followed the noisy-OR rule’s predictions, the 

probability ratings of the compounds demonstrated that most participants 

followed the non-normative linear and averaging strategies.  

 

 

7. 3. Numeracy 

 

 

Making good decisions in the real world requires some numerical ability. 

Although many causal judgments and decisions rely heavily on understanding 

basic mathematical concepts, little research has examined the role of numerical 

ability, or numeracy, in decision making (Peters, Vastfjall, Slovic, Mertz, 

Mazzocco, & Dickert, 2006; Reyna & Brainerd, 2007). Numeracy is defined as 

the ability to understand and use basic probability and numerical concepts to 

perform rudimentary mathematical operations, compare magnitudes, and 

comprehend ratio concepts (including fractions, proportions, percentages and 
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probabilities). While it may appear that they are closely related, numeracy is not 

due to general intelligence (Peters et al., 2006; Reyna, Nelson, Han, & 

Dieckmann, 2009).  

Research in numeracy suggests that people differ substantially in 

numerical ability (Lipkus, Samsa, & Rimer, 2001; Woloshin, Schwartz, Black, & 

Welch, 1999) and that many people are even ‘innumerate’ (Paulos, 1988). In 

today’s increasingly technological world, when people have unprecedented 

access to numerically expressed information, low numeracy and most 

importantly innumeracy seems to be a critical obstacle to make good decisions 

in causal, financial and medical domains, among others. A number of studies 

(Fagerlin, Ubel, Smith, & Zikmund-Fisher, 2007; Keller, 2011; Lipkus & Peters, 

2009) show that higher level of numeracy is related to better comprehension 

and integration of numerical information, usually leading to more informed and 

better decisions. More relevant to the present experiments, research on the 

effect of numeracy and presentation formats on risk perceptions and medical 

decision making suggests that less numerate participants were sensitive to the 

changes in presentation format, whereas highly numerate individuals were 

relatively unaffected (Dieckmann, Slovic, & Peters, 2009; Dickert, Kleber, 

Peters, & Slovic, 2011; Peters et al., 2006, 2011). This conclusion could be 

extrapolated to the results of Experiments 2A and 2B which studied adolescents 

who were presumably naïve to probability theory. We conducted replications of 

Experiments 1A and 1B, originally conducted with Psychology students. The 

results were exactly the same in the adolescents sample and Psychology 

students’ sample. This finding can have two plausible explanations: One, in our 

experiments numeracy is not a crucial factor. Or two, if numeracy is a key factor, 
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in Spanish educative system the level of numeracy obtained in adolescence is 

enough to obtain the same pattern of choices observed in University students.  

It would have been interesting to measure numeracy across our 

experiments to check whether participants who scored low on numeracy were 

those that changed their strategies of decision making based on changes on 

different formats of presenting numerical information and cover stories, as 

found in Experiments 3C and 3D. 

 

  

7.4. The independence assumption 

  

Despite our efforts to prevent the participants from believing that there 

were interactions between causes, it is possible that we did not achieved this 

goal in the earlier experiments. If that were the case, our results could be 

consistent with the noisy-OR perspective: When the causes are clearly 

independent the responses are more in line with the noisy-OR rule predictions. 

It is interesting to note that we have two causal scenarios (the coin tossing game 

and that Hyperion scenario) that may more clearly promote the perception of 

the independence principle assumed by default in models like Cheng’s (1997) 

Power PC theory. One could argue that the change in the choice pattern found in 

Experiments 3C and 3D could be due to the type of causal scenario employed in 

these two last experiments, with scenarios that emphasize the lack of interaction 

between the causes whereas in the pink eyes scenario chemical substances and 

drugs are more prone to lead the participants to assume interactions between 



General discussion 115 

 
 

them, because of previous knowledge about them. However, this assumption is 

hard to reconcile with the results of other studies favoring the noisy-OR rule 

that also involved causal stories regarding drugs and medical substances 

(Liljeholm & Cheng, 2007, 2009). Given the mixed evidence in the literature 

about causal learning models employing different integration strategies, one of 

the next steps might be to include a direct measure of whether or not 

participants believe there is an interaction between the potential causes.  

 

 

7. 5. Implications for causal learning models 

 

 

Considering the Bayesian perspective briefly covered in the Introduction, it 

should be mentioned that the experiments in this thesis were not designed to 

directly measure if participants’ behavior is consistent with Bayesian models. 

But these models can explain our pattern of data attending to the flexibility in 

the strategies that our participants seem to have in all the experiments. The fact 

that participants seem to be sensitive to factors like the cover story or the 

presentation format can be understood as some type of previous knowledge 

resulting in an ability to choose the integration strategy that subjects deemed 

most appropriate in the situation where they are. Bayesian models reflect well 

this flexibility (Lu, Rojas, Beckers & Yuille, 2008). But this does not solve all the 

problems. The fact that Bayesian models are very powerful and flexible, 

incorporating this prior knowledge that has been proven so crucial, can make 
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them less falsifiable than alternative models, given that they can represent one 

thing and its opposite. These models are usually unconstrained, given that they 

make few a priori predictions but a posteriori can account for nearly any result. 

It is not surprising that some authors (Lee, 2010) have suggested that Bayesian 

inference should be used now as a statistical method, not a model of mind. 

In the earlier Causal Learning Models section, configural models have 

been mentioned but not covered in detail. These configural models can account 

for some of the experimental data obtained from the present experiments. 

Configural models (Kruschke, 1992; Pearce, 1987, 1994) propose that compound 

stimuli are processed not as separate entities, but as unique exemplars that 

form associations that are independent of those formed by their constitutive 

elements. When a novel compound is presented for the first time and the 

participant has not learned anything about it, what has been learned about the 

elements is generalized to the compound based on the similarity of the 

individual elements to the compound. As a consequence of this generalization, 

the configural view predicts that the strength of a given compound will 

approximate the average strength of each of its components in isolation, 

whereas the elemental approach predicts that the strength of the compound will 

be higher than the strength of either component presented in combination. In 

our experiments, the similarity between A and AB would be .50, because half of 

the elements of AB compound are present in A as well, and the same with B and 

AB. In many of our experimental probability sets, the strength of A is .40 and 

the strength of B is again .40, then the associative strength of the compound AB 

would be .40 [(.40 · .50) + (.40 · .50)]. The integration rule used by these 

configural models could potentially explain why many participants showed a 

pattern of preference responses consistent with an averaging strategy. This 
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strong tendency to use the averaging strategy might have been developed by 

practice, because this strategy has been useful in the past. 

A number of studies conducted over the past years have demonstrated that 

the way in which stimulus are processed is not fixed beforehand, and that a 

number of factors can heavily influence whether they are processed in an 

elemental or configural way. These factors include experimental instructions 

(Lipp, Cox, & Siddle, 2001; Mitchell & Lovibond, 2002), prior experience 

(Mehta & Williams, 2002; Williams & Bracker, 1999), stimulus properties 

(Kehoe, Horne, Horne, & Macrae, 1994; Lachnit, 1988; Myers, Vogel, Shin, & 

Wagner, 2001; Rescorla & Coldwell, 1995), stimulus organization (Glautier, 

2002; Martin & Levey, 1991), and task demands (Lachnit & Kimmel, 1993; 

Lober & Lachnit, 2002, Shanks & Darby, 1998). The literature indicates that 

sometimes people process information as configurations, and sometimes as 

elements. In our experiments, on the probability ratings for compounds, we also 

showed that people sometimes average, and sometimes summate (using linear 

or noisy-OR summation). Thus, these results are consistent with the range of 

results that have been observed in the literature on configural versus elemental 

processing. 

The results of our experiments are problematic for models of causal 

learning that rely exclusively on either the linear integration rule or the noisy-

OR integration rule. A challenging possibility that has been proposed (Melcher, 

Shanks & Lachnit, 2008; Williams, 1995) is that stimulus processing involves 

both elemental and configural coding (Fanselow, 1999; Pearce & Bouton, 2001; 

Wagner, 2003), and that the predominance of one or another is a function not 



118  In search of Rationality in Human Causal Learning 

 

only of the task demands, but also of the individuals’ learning history. 

Consistent with this assumption, there is some evidence that training with 

elemental discrimination disposes participants to use elemental coding in 

subsequent tasks, whereas training with configural discriminations predisposes 

participants to use configural coding in subsequent tasks (Williams & Braker, 

1999; Williams et al., 1994). Because these assumptions are less parsimonious 

than a single rule it is imperative to be able to predict which rule will be used 

and when.  

 

 

7.6. Previous experiments on summation 

 

A small number of studies have reported evidence favoring summation 

and elemental processing in human causal learning (Van Osselaer, Janiszewski 

& Cunha, 2004; Collins & Shanks, 2006). Interestingly, these two studies that 

have found summation in human causal learning used a task in which the 

outcome during training was quantitative and submaximal. By contrast, Soto, 

Vogel, Castillo and Wagner (2009) reported evidence of summation in human 

causal learning in three experiments.  They tried to find out whether the nature 

of the outcomes in the training phase (magnitude or categorical, maximal or 

submaximal) is a critical variable that can promote elemental-like results. The 

results suggest that summation is a relatively general finding in human causal 

learning, independent of the specific nature of the outcome used during training 
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(binary or magnitude) and of the kind of scale used to measure causal ratings 

during test (magnitude or likelihood of the outcome), not as Collins and Shanks 

(2006) suggested.  

The observance of summation in human causal learning is not peculiar to 

training and testing with different magnitude, but can be obtained with binary 

outcomes in training and estimations of likelihood of the consequence in 

testing. What appears to be important is that the training and testing conditions 

allow the participants to give submaximal causal ratings to the elemental 

stimuli, that is, to avoid producing such high ratings to the elemental stimuli 

alone that summation is precluded by a ceiling effect. These results are more 

easily explained by elemental theories of associative learning (Mackintosh, 1975; 

Rescorla & Wagner, 1972; Wagner, 1981), which suppose that the associative 

strength of a compound is the sum of the associative strengths acquired by each 

of its components. They would generally be considered to be at odds with 

configural learning theories (Estes, 1994; Pearce, 1987), which argue that the 

associative strength of a compound should be the same or lower than that 

acquired by its individual elements.  

As can be seen along all the experimental work presented here, 

summation is unstable. Every single change in the experimental procedure has 

impact on the data. This is consistent with previous findings as well. For 

instance, van Osselaer et al. (2004) found that minor changes in the procedure 

when collecting judgments or presenting the information could result in the 

suppression of the summation. Later, Steven Glautier and colleagues (2010) 

found that when the similarity between two potential causes is increased by 

means of adding a common feature, summation is reduced, and can be even 



120  In search of Rationality in Human Causal Learning 

 

reversed. Interestingly, this reduction is logical starting from an averaging 

strategy: If participants average the causal power of each candidate cause, then 

the sum need not be higher than either of its parts. Most interestingly to the 

present experiments, Waldmann (2007) demonstrated that minor changes in 

the experimental procedure could influence whether participants combined 

causes in a basis of an averaging or an additive (linear or noisy-OR) integration 

rule. By contrast, when the experimental task involves subtracting causal 

powers instead of addition, participants’ responses tended to be those predicted 

by an additive rule, even when the same instructions were used. This is 

consistent with the divergences we found between the pattern of preferences 

and the probability ratings in some of our experiments.  

This conclusion is not very different from the one reached by previous 

experiments, participants are not fixed in employing a single causal induction 

strategy. Rather, qualitative differences in responding can be observed though 

subtle changes in the experimental environment such as judgment intervals 

(Collins & Shanks, 2002), magnitude of the effect (De Houwer, Beckers & 

Glautier, 2002), and the type of question that probes causal knowledge (Matute, 

Arcediano & Miller, 1996; Matute, Vegas & De Marez, 2002).  Although there 

are also plenty of well-designed experiments suggesting that people are able to 

behave according to the Power PC assumptions, it is unclear that people use the 

same reasoning strategy in everyday-life situations. In everyday life, most 

problems of causal induction are full of confounding variables beyond the 

capacity of lay people to isolate. Making sure that the assumptions required for 

the inferential rule hold is difficult, as best.  
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To sum up, if we have to highlight just one finding from our experiments 

is that they clearly show that the notion that people’s default assumption is the 

independence of the causes is incorrect in a variety of causal scenarios. And 

therefore, the claim of the noisy-OR rule as the default strategy is inconsistent 

with the results of the experiments in this thesis. 
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9.1. Appendix 1: Instructions for Pink Eyes 
 

 

Please, answer the questions in the order they are written. Once you have 

answered one question, please do not come back to this question later to change 

your answer. We are interested in your first answers.  

Try to imagine the following situation. The cosmetics industry has recently 

been revolutionized by the discovery of a number of natural substances that can 

change the color of the people’s eyes. Interestingly, the color most demanded by 

consumers is not any of the normal ones (blue, green, brown...), but pink. 

Unfortunately, there are just a few known substances that produce this eye 

color. 

 

For the time being, scientists have identified only five substances that may 

cause the pink eyes. The results of these studies are as follows: 

-If you inject substance Alfa, eye color turns pink 40% of the time. 

-If you inject substance Beta, eye color turns pink 40% of the time. 

-If you inject substance Gamma, eye color turns pink 80% of the time. 

-If you inject substance Delta, eye color turns pink 64% of the time. 

-If you inject substance Omega, eye color turns pink 0% of the time. 

 

There are several cosmetic companies that sell products to change the 

color of the eyes. Most of these products are based on different compounds of 

one or several of these substances. Imagine that you also want to change the 

color of your eyes and answer the following questions accordingly: 
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1. If there is a product that contains a compound of the Alfa and Beta 

substances, and another that contains a compound of the Gamma and Omega 

substances, which one would you choose? (Please circle your choice) 

Alfa and Beta / Gamma and Omega 

 

2. If there is a product that contains a compound of the Alfa and Beta 

substances, and another that contains a compound of the Delta and Omega 

substances, which one would you choose? (Please circle your choice) 

Alfa and Beta / Delta and Omega 
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9.2. Appendix 2: Instructions for physical 

beauty 
 

Ponte por un momento en la siguiente situación. La ciencia descubre una serie 

de proteínas que tienen la característica de impedir la percepción de la belleza 

física, en pro de la interior. Por convicciones y principios, decides someterte a 

este tratamiento proteínico, con el objetivo de comenzar a percibir la esencia de 

las personas que te rodean, librándote de la influencia de su apariencia física.  

 

Por el momento, los científicos sólo han estudiado cinco proteínas que 

podrían provocar que dejes de percibir la belleza física. Los resultados de estos 

estudios son los siguientes: 

- Si se inyecta la proteína Alfa, 120 de cada 200 personas dejan de percibir 

la belleza física. 

- Si se inyecta la proteína Beta, 130 de cada 200 personas dejan de percibir 

la belleza física. 

- Si se inyecta la proteína Gamma, 190 de cada 200 personas dejan de 

percibir la belleza física. 

- Si se inyecta la proteína Delta, 160 de cada 200 personas dejan de 

percibir la belleza física. 

- Si se inyecta la proteína Omega, 60 de cada 200 personas dejan de 

percibir la belleza física. 
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Existen diversas empresas farmacológicas que comercializan productos para 

modificar la percepción de la belleza. La mayor parte de estos productos se 

basan en compuestos de varias de estas proteínas. 

 

Imagina que tú también deseas dejar de percibir la belleza física inyectándote 

un compuesto de estas proteínas, y responde a las siguientes preguntas: 

 

1. Si hay una marca comercial que vende un compuesto de las 

proteínas Alfa y Beta,  y otra marca comercial que vende un 

compuesto de las proteínas Gamma y Omega, ¿cuál elegirías? (Marca 

tu respuesta con un círculo.) 

 

Alfa y Beta Gamma y Omega 

 

 

2. Y si tuvieras que elegir entre una marca con el compuesto Alfa y 

Beta y otra con el compuesto Delta y Omega, ¿cuál elegirías? (Marca 

tu respuesta con un círculo.) 

 

Alfa y Beta Delta y Omega 
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9.3. Appendix 3: Instructions for Coins 
 

Imagine you are playing a coin tossing game. You win if you get at least one 

head. There are three different coins. Each coin is biased, so the chance you get 

a head will not be 50%. The real chances are: 

 

- Tossing COIN A produces heads 40% of the time. 

- Tossing COIN B produces heads 80% of the time. 

- Tossing COIN C produces heads 64% of the time 

 

Answer the following questions taking into account that your goal is to 

maximize your chances of winning: 

 

1. Which option would you prefer if given the option of tossing COIN A 

TWICE (you win if you get a head on either toss or on both tosses) or the 

option of tossing COIN B ONCE (you win if you get a head)? Please circle 

your preferred option. 

 

TOSS COIN A TWICE  TOSS COIN B ONCE 

 

2. If you are given the option of tossing COIN A TWICE (again you win if 

you get at least one head) or tossing COIN C ONCE (you win if you get a 
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head), which option would you prefer? Please circle your preferred 

option. 

 

 

TOSS COIN A TWICE  TOSS COIN C ONCE 

 

What is the probability of getting at least one head if you toss COIN A twice? 
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9.4. Appendix 4: Instructions for Hyperion 

with graphical banners 
 

Imagina que eres un científico encargado de terraformar un planeta para que el 

resto de la humanidad pueda vivir en un nuevo mundo cuando la Tierra deje de 

ser habitable. El planeta en el que estás destinado, Hyperión, tiene unas 

características muy peculiares que hacen que la supervivencia humana sea muy 

difícil hasta que se logre dominar el terreno. Dispones de la información que te 

suministran los técnicos sobre los peligros que contiene el planeta y la tasa de 

supervivencia de los primeros pobladores.  

Los técnicos han concluido que los peligros más habituales en Hyperión son: 

1- Ingerir liquen de la superficie del planeta, lo cual puede provocar muerte por 

intoxicación. 

2- Acercarse a océanos de metano líquido, lo cual puede provocar muerte por 

abrasión. 

3- Exponerse a una tormenta eléctrica, lo cual puede provocar muerte por 

electrocutamiento. 

4- Adentrarse en cuevas subterráneas, lo cual puede provocar muerte por 

aplastamiento. 

5- Pisar arenas movedizas de mercurio, lo cual puede provocar muerte por 

ahogamiento. 

 

Por el momento sólo disponemos de los datos sobre el número de exploradores 

que han sobrevivido al encontrarse con cada uno de estos peligros. En la 

siguiente página verás grupos de exploradores que se enfrentaron a alguno de 
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estos peligros. Se representa gráficamente cuántos de estos exploradores 

lograron sobrevivir: 
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Representa a un 

explorador que 

sobrevivió 

 

Representa a un 

explorador que 

murió 

 

 

 

Estos exploradores ingirieron 

liquen de la superficie del 

planeta: 

 Estos exploradores se 

acercaron a océanos de metano 

líquido: 

 Estos exploradores se 

expusieron a una tormenta 

eléctrica: 

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

 

 
 

 
 

 
 

 
 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

       

 
 

 
 

 
 

 

 

     

Estos exploradores se 

adentraron en cuevas 

subterráneas: 

 
Estos exploradores pisaron 

arenas movedizas de mercurio: 
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Ahora, imagina que tu misión consiste en colocar y activar la primera planta 

depuradora de atmósfera, que os permitirá respirar oxígeno sin necesitar 

máscara. Desgraciadamente, los puntos idóneos para colocar la maquinaria 

están situados en zonas de riesgo. Tu tarea es elegir la ruta más segura. Por 

favor, responde a las preguntas en orden, y no vuelvas atrás para cambiarlas. 

Estamos interesados en tus primeras respuestas. 

 

Con el fin de maximizar tus posibilidades de sobrevivir, ¿preferirías tomar una ruta 

en la que te acercarás a océanos de metano y te expondrás a tormentas eléctricas o 

por el contrario una ruta en la que pisarás arenas movedizas? Redondea la respuesta. 

océanos y tormentas       arenas 
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Con el fin de maximizar tus posibilidades de sobrevivir, ¿preferirías tomar una ruta 

en la que te acercarás a océanos de metano y te expondrás a tormentas eléctricas o 

por el contrario una ruta en la que te adentrarás en cuevas subterráneas?  

océanos y tormentas       cuevas 

 

Con el fin de maximizar tus posibilidades de sobrevivir, ¿preferirías tomar una ruta 

en la que te acercarás a océanos de metano y te expondrás a tormentas eléctricas o 

por el contrario una ruta en la que pisarás arenas movedizas e ingerirás liquen?  

océanos y tormentas      arenas y liquen 

 

Con el fin de maximizar tus posibilidades de sobrevivir, ¿preferirías tomar una ruta 

en la que te acercarás a océanos de metano y te expondrás a tormentas eléctricas o 

por el contrario una ruta en la que te adentrarás en cuevas subterráneas e ingerirás 

liquen? 

océanos y tormentas          cuevas y liquen 

 

 

De 100 nuevas personas que toman una ruta donde se acercan a océanos de metano y 

se exponen a tormentas eléctricas, ¿cuántas dirías que van a sobrevivir? 

____________ 
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De 100 nuevas personas que toman una ruta donde pisan arenas movedizas e 

ingieren liquen, ¿cuántas dirías que van a sobrevivir? 

____________ 

 

De 100 nuevas personas que toman una ruta donde se adentran en cuevas 

subterráneas e ingieren liquen, ¿cuántas dirías que van a sobrevivir? 

____________ 

Edad: 

Sexo: 

 

Estudios:                                                                                                        ctrb1 


