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ABSTRACT Artificial intelligence (AI) plays a critical role in Intelligent Transport Systems (ITS) as urban
areas grow by processing data for safety enhancements, predictive analysis, and traffic management. This
results in better traffic control, lower emissions, and preventative actions to lessen the effects of accidents.
Despite these developments, there isn’t a thorough academic analysis that covers a variety of optimization
strategies for transportation AI models. By presenting an in-depth analysis of AI optimization methods
and their uses in ITSs, this work seeks to close this knowledge gap and give academics important new
information on possible directions for future research. Model-based optimization approaches, reinforcement
learning techniques, model-predictive control techniques, and generative AI techniques are the four areas
into which this study divides AI optimization techniques for the sake of structure, clarity, and comparative
analysis. Subcategories of optimization techniques and their corresponding applications are explored, and
each category is thoroughly addressed. Researchers will be better able to comprehend the state of AI
optimization for transportation management today and in the future thanks to this methodical methodology.
The most cutting-edge optimization methods created in the last five years are summarized in this review.
This work acts as a compass for future research initiatives targeted at developing scalable and adaptable
AI solutions for transportation management by identifying common approaches and highlighting research
needs.

INDEX TERMS Artificial intelligence, generative AI, model predictive control, model-based optimization,
reinforcement learning, intelligent transport systems.

I. INTRODUCTION
The transportation industry, being an integral part of eco-
nomic and social development, has significantly benefited
from AI advancements. Optimizing transport management
is crucial for enhancing efficiency, reducing costs, and
improving user experiences. This review paper aims to
provide a comprehensive overview of the emerging trends
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in optimization techniques applied in transportation systems.
In the last decade, due to the advance in technologies,
various aspects of transportation model optimization have
been published. Reference [1] conducted a comprehensive
review on noteworthy contributions made in the applications
of smart technologies in improving logistics operations and
transportation network efficiency. 84 papers were reviewed
and classified into Autonomous, Smart Logistics and Smart
Warehouse. The challenges in optimization with the appli-
cations of smart technology were explained alongside future
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direction. Also, [2] conducted a systematic literature review
synthesizing the state-of-the-art of AI applied in railway
traffic planning and management from four perspectives,
i.e., the intersection between AI research fields, techniques,
applications, related disciplines and rail Traffic Planning
and Management (TPM). Furthermore, [3] discussed on
the Simulation, Optimization, and Machine Learning in
Sustainable Transportation Systems (STS). Based on the
planning horizon, the application of optimization in STS
was divided into short-term (operational), medium-term
(tactical), and long-term (strategic) decisions. The authors
also categorized STS into urban transportation systems
and regional/global transportation systems based on the
size of the area. For supply chain model optimization,
[4] gave a comprehensive review that synthesizes current
practices and future potentials of leveraging AI for supply
chain optimization. For surveys on the optimization models
for electric vehicle service operations and shared mobility
optimization algorithms, we have [5] and [6] respectively.

To sum up, Abduljabbar et al. [7] gave a holistic overview
of AI techniques applied worldwide to address transportation
problems mainly in traffic management, traffic safety, public
transportation, and urban mobility. The overview concluded
by addressing challenges and limitations as well. However,
it lack the analysis of the optimization methods used.
Also, In terms of technological advancement, the period
from 2019 to 2024 is highly significant. There is a dearth of a
good literature review paper that should cover the literature
published in these years regarding AI transport model
optimization. Furthermore, this review is different from the
reviews that only considered specific area optimization [1],
[5] and [6] focusing mainly on model optimization for supply
chain, electric vehicles and shared mobility respectively.
These surveys concentrates on a single objective rather than
concurrently optimizing across a variety of characteristics.
As a result of this, it is abundantly evident that there is a need
for an all-encompassing review that takes into account a range
of optimization models in a manner that is consistent, clear
and organized.

In response to the above points, this paper proposes
a comprehensive review torching across different four
categories of transport AI model optimization, as well as
detailing the challenge or motivation, proposed solution,
model or optimization techniques used, limitations and future
research of some reviewed papers on each of these categories
(Model-based optimization methods, Reinforcement learning
methods, Model-Predictive Control method, and Generative
AI method) are also discussed. We conducted a search
in Google Scholar by using these keywords: transporta-
tion management, transportation model optimization, model
based optimization, reinforcement learning in transportation,
transportation and model predictive control, generative AI
in transportation and have identified several related papers
within the last 5 years. Categorizing these optimization
techniques into four groups helps to organize the different
optimization methods based on their underlying principles

and applications within ITS, making it easier for readers
to understand the different approaches without getting
overwhelmed by a large amount of detail. By grouping
similar techniques together, it also serves as a guide in
comparing different techniques, highlighting their strengths,
weaknesses, and specific contributions to transportation
optimization.

Lastly, this review paper addresses key research questions,
including: (1) What are the most effective AI techniques
currently being used for transport network optimization?. (2)
How do these different AImethodologies compare in terms of
efficiency, scalability, and optimization methods?. (3) What
are the existing research gaps, and what directions should
future research take to address these gaps?

Fig. 1 shows the structure of this paper, it is organized as
follows. Section II presents the four optimization techniques
categories. Followed by Section III where we have the
applications of these techniques in ITS. This section has
2 subsections where we categorized major ITS problems
into 5 groups and then we also mapped these 5 groups to
it’s corresponding applied optimization class. In Section IV,
we discussed the scalability and computational trade-off for
AI optimization methods. Section V highlights it’s challenges
in Real-World applications. Section VI discussed about the
metrics for scalability and efficiency for these four categories
of optimization methods and finally, lastly, Section VII
concludes the article by summarizing the review process and
by discussing how the research question that we presented in
last paragraph were satisfied by this review work.

II. CATEGORIES OF OPTIMIZATION TECHNIQUES
In this sections, we delve into the four categories of AI
model optimization techniques in detail: model-based opti-
mization techniques, reinforcement learning methods, model
predictive control methods, and generative AI methods. For
each category, we discuss themethodologies, advantages, and
disadvantages comprehensively.

A. MODEL-BASED OPTIMIZATION TECHNIQUES
Model-based optimization (MBO) is a critical component
in contemporary modelling, simulation, and optimization
activities. Recognized as an exceptionally effective method
for addressing real world optimization challenges that are
both cost-intensive and time-consuming, MBO leverages the
use of a more efficient surrogate model to evaluate scenarios,
which can lead to substantial savings in time, space, and
computational resources [8]. MBO is particularly relevant
in engineering fields [9]. The importance of model-based
optimization lies in its ability to reduce computational time
for problems where the solution space and the complexity of
the model make traditional recursive methods too computa-
tionally expensive and, hence, infeasible. For example, meta-
models can provide quick solutions to operational problems
that require decision-making in a short time-frame or promote
a greater understanding of the optimization process. This
makes meta model-based optimization particularly valuable
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FIGURE 1. Flow of review summary.

in scenarios where quick, efficient, and accurate decision-
making is crucial, such as in industrial processes, healthcare,
logistics, and traffic management.

1) MAIN CATEGORIES OF METHODOLOGIES WITHIN
MODEL-BASED OPTIMIZATION
In order to describe the main categories of model-based opti-
mization methodologies that can be found in the literature,
we will base ourselves on the taxonomy proposed in [8].
According to this work, we can differentiate between the
following categories and sub-categories:

• Distribution-based optimization
• Surrogate model-based optimization

– Single Surrogate
– Multi-fidelity surrogate
– Ensemble surrogate

Below are the detailed explanations of each categories
1) Distribution-based optimization algorithms: This algo-

rithms are a class of algorithms used in optimization
and machine learning that focus on modelling and
sampling from probability distributions. Essentially,
these algorithms work by maintaining and updating
a probability distribution over the search space. Over
time, this distribution evolves to increasingly favour
regions of the search space that contain high quality
solutions. The key principle behind distribution-based
algorithms is that they do not just search for a single
optimal solution. Instead, they explore a range of
solutions by sampling from a probability distribution.
This approach allows them to navigate large, complex
search spaces effectively compared to other methods.
There are several types of distribution-based algo-
rithms, each with its own specific mechanisms and
applications. Some of the most common examples of
distribution-based algorithms are:

• Estimation of Distribution Algorithms [10]: They
explicitly build and update probabilistic models of
promising solutions. They use thesemodels to gen-
erate new candidate solutions for the optimization
problem

• Bayesian Optimization [11]: This method uses
Bayesian techniques to model the objective func-
tion and makes decisions based on this probabilis-
tic model. It’s particularly useful for optimization
problems where function evaluations are expen-
sive.

2) Surrogate-based optimization algorithms: Surrogate-
based optimization algorithms are advanced compu-
tational methods used to efficiently solve complex
optimization problems, particularly those where direct
evaluations of the objective function are computation-
ally expensive or time-consuming [12], [13], [14], [15].
The core idea of surrogate-based optimization is to
create a surrogate model, an approximate representa-
tion of the actual objective function. This surrogate
model is computationally cheaper to evaluate and is
constructed using a limited number of evaluations of
the true objective function. The optimization process
in surrogate-based algorithms typically involves two
main steps: building the surrogate model and then
optimizing this model. Initially, a few samples of
the objective function are taken, often using design
of experiments techniques. These samples are used
to construct the initial surrogate. The optimization
algorithm then iterates between updating the surrogate
model with new samples and finding the optimum of
the current surrogate. Three variants of surrogate-based
optimization algorithms have become increasingly
popular in recent years [8]: single-surrogate models,
multi-fidelity surrogate models and ensemble models.
We review each of these variants below:

• Single-surrogate models: These optimization algo-
rithms are a type of surrogate model-based
optimization where only one model is used to
accelerate the search process. One of the most
known approaches within single-surrogate models
is Surrogate Assisted Evolutionary Algorithms
(SAEAs) [16], which is a variation of evolutionary
algorithms that utilise meta-models to approximate
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the fitness function. The surrogate models or meta-
models that have been used in SAEAs can be
classified into the following categories:
– Absolute Fitness Models: These models aim to

directly predict the fitness function values of
candidate solutions. They are further divided
into:
(1) Regression-basedModels: Thesemodels use
regression techniques to model the relationship
between inputs (candidate solutions) and out-
puts (fitness values) [16]. (2) Similarity-based
Models: They approximate fitness based on the
similarity or correlation between unevaluated
and evaluated individuals [17].

– Relative FitnessModels: These models focus on
estimating the rank or preference of candidates
rather than their absolute fitness values. They
are subdivided into:
(1) Rank-based Models: These models predict
the relative rank of individuals in a popu-
lation based on evaluated samples [18]. (2)
Classification-basedModels: These models cat-
egorise individuals based on a comparison result
with a reference solution, determining whether
they are ‘better’ or ‘worse’ [19].

• Multi-fidelity surrogate models: Multi-fidelity sur-
rogate models [20] are algorithms that integrate
different levels of fidelity, i.e., detail and accu-
racy, to achieve a balance between computational
efficiency and accuracy in predictions. These
models combine high-fidelity models (HFMs),
which offer detailed and accurate results but
are computationally expensive, with low-fidelity
models (LFMs), which are less detailed but com-
putationally cheaper. MFMs are particularly useful
in applications where high-precision modelling
is required but are restricted by computational
resources. There are two main types of MFMs:
Multi-Fidelity Surrogate Models (MFSMs) [21]
and Multi-Fidelity Hierarchical Models (MFHMs)
[22]. MFSMs use algebraic surrogates to correct
LFMs based on HFM predictions, while MFHMs
combine different fidelities based on specific crite-
ria without constructing a surrogate model. Within
these categories, various methods like additive and
multiplicative corrections, comprehensive correc-
tions, and space mapping are used to integrate
different fidelity levels. The choice of method
depends on the specific characteristics of the
problem at hand. Some of themost commonly used
models for Multi-fidelity surrogate optimization
are Support Vector Regression Models [23], which
map high and low-fidelity samples into a high-
dimensional space using a kernel function and
then apply a linear model to determine the input-
output relationship, co-kriging models [21], that

extend the concept of Kriging or Gaussian process
regression to multiple levels of fidelity, modeling
the correlation between different fidelity levels;
or deep learning approaches [22], [24], [25],
particularly multi-fidelity deep neural networks
(MFDNN), are used to capture complex, nonlinear
relationships between different fidelity levels.

• Ensemble-based surrogate models: An ensem-
ble surrogate model is a composite model that
combines multiple surrogate (or proxy) models
to make predictions or perform analyzes. Each
surrogate model in the ensemble is designed to
approximate the same underlying system but may
use different modelling techniques, assumptions,
or data subsets [8], [12]. These surrogates might
include various types of models like polynomial
regressions, kriging models, radial basis func-
tions, neural networks, or any other statistical or
machine learning method capable of capturing
the behaviour of the system of interest. Unlike
multi-fidelity models, which integrate models
of varying levels of fidelity, classical ensemble
methods typically combine data-driven models
of similar or identical fidelity. The key idea
behind ensemble surrogate models is to leverage
the strengths of multiple modelling approaches
to achieve greater accuracy and robustness than
what might be obtained from any single surrogate
model. By combining models, the ensemble can
compensate for individual weaknesses and capi-
talise on unique strengths. Ensemble-base surro-
gate models can be categorised according to the
type of methodology used to build the ensemble.
In this way, we can find the following categories:
1) Bagging [26], [27], which generates multiple
data subsets through bootstrapping, training a
model on each, and averaging their outputs; 2)
Boosting [28], which sequentially trains mod-
els to focus on previous errors, with the final
prediction being a weighted sum of all models;
3) Stacking [29] which trains multiple models
on the same data, then uses a new meta-model
to combine these predictions; 4) Wrapping [30]
which employs a wrapper algorithm to select
the best combination of models and features,
often using cross-validation; and 5) Gradient
Boosting [31], which builds models sequentially,
with each new model correcting the errors of its
predecessor, guided by the gradient of the loss
function.

2) DISCUSSION ON MODEL-BASED
OPTIMIZATION METHODS
One of the key strengths of MBO approach is
its adaptability. The ability to update and adapt
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FIGURE 2. Taxonomy for model based optimization methods.

the model to reflect changes in the environment
ensures that the optimization process remains
relevant and effective over time. Moreover, the
process of creating these models often leads to
a deeper understanding of the system being opti-
mised. This not only generates valuable insights
into the system’s internal dynamics but also helps
in understanding the interrelationships within it.
Another significant benefit is the robustness of a
well-designed model. Such models are adept at
finding solutions that are resilient to uncertainties
and variations in the environment, providing a
structured way to handle unpredictability and
enhancing the reliability of the optimization
results. However, the success of model-based
optimization heavily depends on the accuracy
of the model. If the model doesn’t accurately
reflect the real-world system, the results might
be sub-optimal. Building an accurate model is
particularly challenging for complex systems,
as capturing all relevant factors becomes increas-
ingly difficult with the complexity of the system.
Furthermore, the computational cost associated
with this approach can be considerable, especially
for intricate models and optimization problems,
which might limit its feasibility in time-sensitive
or resource-limited scenarios. Regularly updating
the model to mirror changes in the system is
also essential for maintaining its effectiveness, but
ensuring a smooth and accurate updating process
without disrupting ongoing operations can be a
challenge. Additionally, since models often rely on
assumptions about the system, there is a risk that if

these assumptions are incorrect or oversimplified,
and the optimization results may not be appli-
cable or reliable in real-world scenarios. Fig. 2
shows a taxonomy of model-based optimization
techniques.

B. REINFORCEMENT LEARNING OPTIMIZATION
TECHNIQUES
Reinforcement Learning (RL) [32] is a paradigm of machine
learning that focuses on how agents should take actions
in an environment to maximise some notion of cumulative
reward. The fundamental principle of RL is centred on the
concept of agents learning to make decisions by interacting
with their environment, where these interactions are framed
in terms of states, actions, and rewards. RL has been
successfully applied in various domains, including robotics,
gaming, healthcare, finance, and autonomous vehicles. The
objective in RL is to find a policy, which is a mapping from
states to actions, that maximises the expected cumulative
reward over time. This objective often involves balancing the
exploration of uncharted territory in the state-action space
(exploration) against the exploitation of current knowledge
to gain higher rewards (exploitation). Key components of
RL include [32]: 1) Agent: the learner or decision maker;
2) Environment: The external system with which the agent
interacts; 3) State: A representation of the status of the
environment; 4) Action: An intervention or decision made by
the agent; and 5) Reward: A scalar feedback signal indicating
the success of an action. In RL, the agent learns a policy
through trial-and-error interactions with the environment.
The learning process involves evaluating the consequences
of actions and refining the policy to improve the expected
rewards.
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1) MAIN CATEGORIES OF METHODOLOGIES WITHIN
REINFORCEMENT LEARNING OPTIMIZATION
Although other categories of RL methods can be found in the
literature, we have focused on the four categories that, in our
opinion, have the best applicability to the area of Transport
Network optimization. In the following subsections, we will
review each of these categories:

• Continual RL
• Multi-agent RL
• Off-line RL
• Hierarchical RL
1) Continual Reinforcement Learning: Continual Rein-

forcement Learning (CRL) [33] is an advanced
paradigm within the field of machine learning that
focuses on the development of learning agents capable
of adapting over a continuous stream of experiences.
CRL extends the principles of traditional reinforcement
learning by emphasising the agent’s ability to learn
incrementally across a non-stationary distribution of
tasks. This approach is particularly aimed at addressing
real-world scenarios where the environment’s dynam-
ics are subject to change over time, and the learning
process itself cannot be confined to a fixed set of
tasks or datasets. CRL encompasses strategies for
retaining previously acquired knowledge, minimising
catastrophic forgetting, and efficiently adapting to
new situations and tasks as they arise. Continual
Reinforcement Learning (CRL) approaches can be
broadly categorised into three main categories [33]:

• Explicit Knowledge Retention: This approach
emphasises the importance of preserving knowl-
edge gained from previous experiences. This is
critical in continual learning environments to
mitigate the issue of catastrophic forgetting, where
the acquisition of new knowledge leads to the
erosion of previously learned information. Within
this strategy, various techniques are employed:
1) Latent Parameter Storage [34], which involves
maintaining essential parameters in a latent form
that encapsulates past learning; 2) Distillation-
BasedMethods, which focus on extracting and pre-
serving the crucial knowledge components from a
model; and 3) Rehearsal-Based Techniques [35]
simulate or replay past experiences to reinforce
previous learning.

• Leverage Shared Structure strategy: This approach
is focused on the identification and utilisation
of common structures across different tasks or
environments and promotes retention and transfer
across the lifetime of an agent. Some of the
methodologies proposed to leverage this shared
structure are 1) Modularity and Composition [36],
which aims to address the challenge of creating
machines capable of compositional generalisa-
tion. Compositional generalisation involves using
past experiences to solve variations of previous

problems or evenmore complex issues that are new
to the agent; 2) State Abstractions [37], which aims
at identifying and harnessing common structures
across different tasks, thereby potentially enabling
the effective forward transfer of knowledge among
related tasks; 3) Skill-Focused Approaches [38],
which represent learning strategies that bypass the
necessity of making decisions at every single time
step; 4) Goal-Focused Methods [39], which aims
to deal with complex problems by concentrating
on reasoning based on goals, which can be defined
as a state the agent want to reach, a specific reward
target for the agent, or the endpoint of a skill; and
5) Auxiliary Task Focused Techniques [40], which
aim at learning representations that encapsulate
the fundamental, task-independent dynamics of the
world. Learning to Learn: Also known as meta-
learning, it is about enhancing the agent’s ability
to learn more effectively over time. This category
includes Context Detection [41], where the agent
learns to recognise and adapt to different contexts
or environments; Learning to Adapt [42], which
aims at imparting a bias that enhances the agent’s
efficiency in learning new behaviours with fewer
samples; and Learning to Explore [43], which
involves developing strategies to provide the agent
with the intrinsic motivation to explore and acquire
new knowledge efficiently.

2) Multi-agent Reinforcement Learning: Multi-agent
reinforcement learning (MARL) [44] is characterised
by the interaction of multiple agents within a shared
environment. These agents simultaneously learn to
make decisions, often with varying objectives. The
environment in MARL scenarios is typically non-
stationary from the perspective of any individual
agent due to the concurrent learning and actions of
other agents. This non-stationarity poses a significant
challenge for algorithm design and convergence to
stable policies. MARL can be categorised based on the
nature of interactions among agents [44], which can
be fully cooperative, fully competitive, or cooperative-
competitive. Below, we describe each of them:

• Fully cooperative multi-agent RL [45] involves
scenarios where multiple agents work together
towards a common goal. In this context, agents are
designed to collaborate, sharing information and
strategies to optimise a collective reward function.
The challenge in fully cooperative MARL lies in
efficiently coordinating the actions of all agents to
achieve optimal outcomes. This requires agents to
not only learn from their individual experiences but
also to consider the actions and learning processes
of their peers.

• Fully competitive multi-agent RL [46] involves
scenarios where multiple agents operate in an
environment with the goal of maximising their

173986 VOLUME 12, 2024



B. I. Afolayan et al.: Emerging Trends in Machine Learning Assisted Optimization Techniques

own individual rewards, often at the expense of
other agents. In this setting, agents are in direct
competition with each other, leading to a zero-
sum or adversarial situation. Each agent aims to
optimise its own performance without cooperation
or communication with other agents.

• Cooperative-competitive multi-agent RL [47] is
a hybrid approach where agents in a shared
environment exhibit both cooperative and compet-
itive behaviours. In this framework, agents may
form alliances or compete against each other,
depending on the context and objectives of the
scenario. This approach models complex real-
world situations where entities have overlapping
but not identical goals. Agents must learn to
optimise their strategies through both collaboration
with some agents and competition against others.

3) Off-line Reinforcement Learning: Offline Reinforce-
ment Learning (ORL) [48] is defined as a data-driven
formulation of the traditional reinforcement learning
(RL) problem. In ORL, the primary objective remains
the optimization of a specified goal, similar to standard
RL. However, a significant deviation is that the agent
in ORL does not interact with the environment for
additional data collection through a behaviour policy.
Instead, ORL employs a static dataset of transitions
D, which the learning algorithm utilises to derive
the best possible policy. This approach aligns more
closely with the framework of standard supervised
learning, where D serves as the training set for the
policy. The core challenge in ORL is for the learning
algorithm to acquire a comprehensive understanding
of the dynamics of the Markov Decision Process
(MDP) solely from this fixed dataset. Subsequently,
the algorithm must construct a policy π that aims to
achieve the highest cumulative reward when interacting
with the MDP. The Dataset D is presumed to consist
of state-action tuples that are sampled according to
the distribution of states and actions. The categories of
methodologies proposed so far in literature for ORL are
the following [48]:

• Offline Evaluation and RL via Importance Sam-
pling [49]: These methods are important for
evaluating the return of a given policy or for
estimating the policy gradient in offline variants
of policy gradient methods. A common approach
in RL involves the use of importance sampling
to estimate the expected return of a policy. This
estimation is carried out using trajectories sampled
from a behaviour policy. This process is termed as
‘‘off-policy evaluation.’’

• Offline RL via Dynamic Programming [50]: These
methods focus on learning a value function to
derive the optimal policy or estimate policy
returns. For example, offline adaptations of basic
Q-learning and policy iteration methods have

been adapted by initialising with a non-empty
buffer and setting collection steps to zero. Such
approaches, including deep RL variants, have been
effective, but additional online fine-tuning can
significantly enhance performance over training
solely on logged data. This class of ORL methods
faces challenges due to distributional shifts when
only offline data is used. Solutions are categorised
into policy constraint methods, which keep the
learned policy close to the behaviour policy to
reduce distributional shift, and uncertainty-based
methods, which estimate the uncertainty of Q-
values to identify distributional shifts.

• Off-Policy Model-Based RL [51]: Model-based
RL algorithms can be adapted for offline set-
tings by training with offline data, with minimal
changes to the algorithm itself. These meth-
ods, which include uncertainty estimation to
limit model exploitation, are effective in ORL.
Notably, model-based methods have demonstrated
excellent performance in both conventional off-
policy and offline RL settings. Recent works have
also explored the use of high-capacity predictive
models and hybrid approaches combining model-
free and model-based elements for complex tasks
like mobile robot navigation. Additionally, recent
advancements in model-based ORL include con-
servative model-based algorithms. These methods
aim to provide performance bounds by adjusting
the learned model to encourage conservative
behaviour. This involves penalising the policy for
exploring areas where the model’s accuracy is
questionable.

4) Hierarchical Reinforcement Learning: Hierarchical
Reinforcement Learning (HRL) [52] is a variant of
RL that focuses on decomposing complex, long-
horizon tasks into simpler subtasks. This is achieved
by organising the learning process into a hierarchy
of policies, each operating at a different level of
abstraction and timescale. The higher-level policies in
this hierarchy select subtasks, which themselves can be
RL problems to be solved by lower-level policies. This
structuring into a hierarchy allows for more efficient
learning and problem-solving in environments where
considering the entire action space at once would be
impractical or infeasible due to its complexity or size.
The concept of HRL is beneficial for dealing with
long-horizon tasks and large state-action spaces, where
traditional reinforcement learning approaches might
struggle due to their inherent complexity. The main
typologies of HRL methods that we can find in the
literature are the following:

• Learning Hierarchical Policies (LHP) [53]: In
this HRL approach, the lower-level policies are
typically predefined and handle specific, detailed
tasks. The upper levels are responsible for broader
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strategic decisions. This methodology is effec-
tive in scenarios where basic tasks are well-
understood but complex, higher-order planning is
required. The primary challenge in LHP is to
orchestrate these predefined tasks efficiently to
achieve complex objectives. It is particularly useful
in environments where foundational actions or
decisions are established, but coordinating them
towards complicated goals presents a significant
challenge.

• Learning Hierarchical Policies in Unification with
Sub-task Discovery (UNI) [54]: It is a comprehen-
sive HRL methodology that seeks to concurrently
identify sub-tasks and develop hierarchical poli-
cies. This dual process of discovery and learning
is pivotal in situations where the division of
tasks into sub-tasks is not predefined. The UNI
approach facilitates an integrated learning experi-
ence, enabling a system to dynamically uncover
task structures while simultaneously developing
strategies to solve them. It is particularly beneficial
in complex environments where task decomposi-
tion and strategic learning need to occur in an
adaptive and cohesive manner.

• Independent Sub-task Discovery (ISD) [55]: This
HRL approach focuses on the autonomous identi-
fication of sub-tasks independent of any specific
main task. This approach primarily involves a
pre-training phase, where useful sub-tasks are
discovered through exploration and analysis of the
environment. These sub-tasks are task-agnostic,
meaning they are not tailored to any particular
task but are rather general in nature. Once these
sub-tasks are identified, they can be applied in
learning hierarchical policies for different tasks.
The key advantage of ISD lies in its ability to
identify versatile and reusable sub-tasks, which
can facilitate learning across various scenarios and
domains. This strategy contributes to the flexibility
and adaptability of HRL systems, allowing them
to efficiently handle a range of tasks by leveraging
pre-identified sub-tasks.

• Multi-Agent HRL (MAHRL) [56]: This category
extends HRL into the realm of cooperative multi-
agent systems. Therefore, this methodology also
focuses on learning to coordinate among multiple
agents, each potentially possessing its own hier-
archical structure. The fundamental challenge in
MAHRL lies in enabling these agents to effectively
collaborate and learn in a shared environment,
often towards a common goal or in pursuit of
aligned objectives. Each agent in MAHRL is
typically equipped with a hierarchy of policies,
where decisions and actions at various levels of
abstraction must be synchronised with those of
other agents. This synchronisation is crucial to

ensure coherent and efficient behaviour across the
multi-agent system. MAHRL is highly relevant
in complex, real-world scenarios where multiple
entities must work in unison, such as in robotics,
autonomous vehicles, and distributed systems.

• Transfer Learning with HRL (TransferHRL) [57]:
This approach addresses the challenge of transfer-
ring knowledge and skills acquired in one task to
improve or accelerate the learning in another. This
approach leverages the hierarchical organisation
of tasks and sub-tasks in HRL to transfer learned
policies, sub-tasks, or other relevant information
across different but related tasks. The objective
is to enable the HRL system to utilise previously
gained experience, thereby reducing the need
for learning from scratch in new tasks. This
is particularly useful in complex environments
where similar tasks or structures recur, allowing
for more efficient adaptation and learning across
varied challenges. Fig. 3 shows a taxonomy of
reinforcements learning optimization techniques
alongside each of it’s classifications and sub
categories.

2) DISCUSSION ON REINFORCEMENT LEARNING
OPTIMIZATION METHODS
The core of its advantages of RL lies in its flexibility
and adaptability, as RL empowers systems to learn from
experiences and adapt to new circumstances without the need
for explicit programming. This characteristic renders RL
particularly suitable for dynamic and ever-changing scenar-
ios. Moreover, RL excels in optimizing complex decisions.
It proves highly effective in situations where decisions are
sequential and interconnected, optimizing decision-making
processes in intricate scenarios. Another key benefit of
RL is its ability to handle uncertainty and incomplete
information. By continuously learning and updating strate-
gies based on feedback from the environment, RL models
demonstrate a robust capability in managing unpredictable
situations. This adaptability extends to its versatility, with RL
finding applications across various domains. This diversity
in application showcases RL’s potential in addressing a
wide range of problems. However, alongside these benefits,
RL faces several challenges. One significant challenge is
sample efficiency. RL often requires extensive data or
experience to learn effectively, posing a hurdle in real-world
scenarios where data collection is costly or time-consuming.
Additionally, the exploration versus exploitation trade-off
presents a critical balancing act in RL. Determining the
optimal balance between trying new actions to discover better
strategies (exploration) and leveraging known successful
strategies (exploitation) is especially challenging in complex
environments. The design of reward functions and the issue
of sparse rewards also pose significant challenges. Creating
an appropriate reward function that accurately reflects the
objectives of a task is essential. Sparse or poorly designed
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FIGURE 3. Taxonomy for reinforcements learning optimization methods.

rewards can hinder learning, making it inefficient or even
ineffective. Furthermore, generalisation and transfer learning
are challenging aspects of RL. Generalising knowledge
learned in one environment to perform well in new, unseen
environments remains a hurdle. Transfer learning, where
knowledge from one task is applied to enhance learning in
another, is a key area of ongoing research. Safety and ethical
concerns are also paramount when deploying RL systems
in the real world. Lastly, the computational complexity
of RL algorithms, particularly in large-scale or intricate
environments, can limit their applicability in real-time or
resource-constrained settings. This complexity presents a
barrier to the broader adoption of RL in various applications.
Despite these challenges, the field of RL, in our opinion,
offers a wide range of advantages and a high potential for
applicability in Transport Network Management.

C. MODEL PREDICTIVE CONTROL OPTIMIZATION
TECHNIQUES
Learning-Based Model Predictive Control (LBMPC) [58]
is a novel control strategy that combines the robustness of
model predictive control (MPC) with the adaptability of
learning mechanisms. At its core, LBMPC is defined by its
utilisation of a predictive model that is continuously updated
based on data acquired during the system’s operation. This
fusion of predictive control with learning mechanisms allows

LBMPC to effectively handle complex, nonlinear systems
that are subject to uncertainties and changing environments.
However, learning and data-based adaptations inMPC extend
beyond improving the predictive models. On the one hand,
they also use this learning capability for designing and
enhancing controllers. This enables it to ensure safety and
stability in control applications, which is critical in many
industrial and technological contexts.

1) MAIN CATEGORIES OF METHODOLOGIES WITHIN
LEARNING-BASED MODEL PREDICTIVE CONTROL
To describe the main categories of LBMPC methodologies,
we will use the taxonomy outlined in [58]. According to this
reference, the following categories of methodologies can be
distinguished:

• Learning the System Dynamics within MPC
• Learning Controller Design within MPC
• MPC for Safe Learning

Below, we describe each of these categories in details
1) Learning the System Dynamics within MPC: Tradi-

tional MPC relies on preestablished parametric predic-
tion models derived offline using physical principles
and system identification techniques. This approach
includes robust or stochastic MPC to handle uncertain-
ties and disturbances, with models and uncertainties
predefined and fixed offline. In contrast, learning-
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based MPC [59] adapts dynamically, incorporating
real-time data such as state measurements. Learning-
based MPC techniques often differentiate between
a nominal system model and an additive term that
accounts for uncertainty. They usually assume that
control based on the nominal model is feasible if
the appropriate data can be safely collected from the
real system. Furthermore, these methods typically do
not differentiate between real system dynamics and
predictive dynamics, assuming no model mismatch
when the appropriate parametrization of the model is
established. This category of LBMPC can, in turn,
be classified into those using robust paradigms and
stochastic techniques [58]. A more detailed definition
of both is provided below:

• Robust Models: Robust MPC [60] schemes ensure
that constraints are satisfied under uncertainty.
These schemes often split the model into a nom-
inal part and an additive uncertainty component,
assuming the uncertainty lies within a defined set.
Then, the controllers are designed to be robust
against this uncertainty.Many LBMPC approaches
focus on estimating model uncertainty directly
from data. These techniques aim to adjust the
uncertainty set over time to reduce conservatism.
In this line, we can distinguish between para-
metric models [61], which seek parameter values
consistent with observations, and non-parametric
models [62], which estimate the function directly
from observed data points and establish function
bounds.

• Stochastic models. Unlike Robust MPC, which
relies on hard bounds covering all uncertainty,
which can be conservative. In contrast, stochastic
MPC [63] uses distributional information about
uncertainty without relying on hard bounds,
although this makes theoretical analysis more
challenging and often leads to less rigorous results.
Again, we can differentiate between parametric
and non-parametric models. In this case, para-
metric approaches are usually based on scenario
optimization techniques [64] and non-parametric
on Gaussian Process Regression [65].

2) Learning Controller Design within MPC: This type
of LBMPC technique uses learning mechanisms to
design theMPC problem to achieve a desired controller
behaviour by using models for approximating the cost
function and/or the constraints. These approaches can
be divided into two categories [58]:

• Performance-driven controller learning: This
approach aims to enhance closed-loop perfor-
mance by inferring the parametrisation of theMPC
problem that minimises the difference between
the closed-loop performance and the optimal
control problem [66]. This inference can be
addressed in two ways. The first one [67] consists

of solving a black-box optimization problem in
which the controller is a smooth function (e.g.
Gaussian Processes) and a black box optimizer
iteratively adapts the parameters of the smooth
function to optimise the true closed-loop cost.
Bayesian optimization is one of the most common
approaches [68]. The second one addresses the
learning of the terminal components making use
of collected data [67], [69]. Terminal components
refer to the terminal cost and constraints used at the
final prediction step. They guide the system toward
a desired terminal state or behaviour, addressing
the limitation of a short prediction horizon.
By incorporating these terminal components,
MPC can effectively control the system over
a finite prediction horizon while considering
long-term objectives and promoting stability and
convergence in the system.

• Learning from Demonstration with Inverse Opti-
mal Control: This approach leverages observed
data from demonstrations to design an automatic
controller [70]. In MPC, traditional controllers
are often designed based on mathematical system
models. However, inverse optimal control takes
a different path by learning from real-world
demonstrations of desired control behaviours.
In this context, demonstrations involve observ-
ing how an expert or desired control system
performs a specific task or responds to varying
conditions. Instead of explicitly modelling the
system dynamics, inverse optimal control aims
to capture the underlying control strategy from
these demonstrations and translate it into the
parameterisation of the MPC problem. A related
field is Inverse Reinforcement Learning [71],
a technique for identifying cost or reward functions
in probabilistic decision-making. This method
helps interpret optimality conditions probabilisti-
cally, typically using likelihood maximisation, but
is usually limited to discrete state and action spaces
without considering system constraints. However,
recently, they have been expanded to continuous
state spaces by introducing a probabilistic control
objective [72].

3) MPC for Safe Learning: Ensuring safety in learning-
based control is very challenging, particularly in the
context of RL, where safety constraints may not
always be guaranteed during the learning process [73].
To address this, safety frameworks have emerged, com-
biningmodel-based control for safety assurance (model
predictive safety filters) with learning-based con-
troller methods to optimise overall performance. This
approach separates constraint satisfaction handled by
MPC from performance optimization through learning-
based methods, primarily due to the complexity of
stochastic optimal control problems. MPC techniques
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can then be used as safety filters to transform a safety-
critical system into a safe one. The main function
of a Model Predictive Safety Filter [74] is to assess
the control inputs generated by the learning-based
controller and verify that they adhere to predefined
safety constraints. If the proposed control inputs are
deemed unsafe, the safety filter modifies them or
computes a safe backup trajectory to bring the system
back into a safe state. This adaptive approach allows
the system to operate robustly even in the presence
of disturbances or uncertainties, providing an added
layer of safety assurance. Fig. 4. shows a taxonomy
of MPC optimization techniques alongside each of it’s
classifications and sub categories.

2) DISCUSSION ON LEARNING-BASED MODEL PREDICTIVE
CONTROL
Learning-based MPC is a promising approach at the inter-
section of control theory and machine learning, offering
several significant benefits and addressing unique challenges
in control system design. One of the main advantages of
learning-based MPC is its adaptability. Traditional MPC
relies on accurate system models, which can be challenging
to obtain for complex and dynamic systems. In contrast,
learning-based MPC leverages data-driven models, allowing
it to adapt to system changes and uncertainties. This
adaptability enables the controller to perform effectively
in real-world scenarios where model accuracy may vary.
Another benefit is the ability to handle high-dimensional
and nonlinear systems. Learning-based MPC can effectively
control systems with complex dynamics, making it suitable
for applications such as robotics, autonomous vehicles, and
industrial processes. It can learn intricate control policies
that might be challenging to derive analytically. Furthermore,
learning-based MPC can incorporate safety constraints and
optimise performance simultaneously. By learning from data
and adapting to real-world conditions, it can strike a balance
between achieving control objectives and ensuring safety.
This feature is vital in applications where safety is critical.
However, learning-based MPC faces its share of challenges.
One of the primary issues is the need for large amounts
of data for training, which can be impractical in some
cases. Additionally, ensuring the controller’s safety during the
learning process and handling exploration of the control space
without violating constraints remains a challenge. Moreover,
interpretability and guaranteeing theoretical properties are
less straightforward in learning-based MPC compared to tra-
ditional control methods. Understanding the learned control
policies and providing formal guarantees on system stability
and performance can be complex.

D. GENERATIVE AI OPTIMIZATION TECHNIQUES
A subclass of artificial intelligence systems known as
‘‘Generative AI’’ or ‘‘Generative Artificial Intelligence’’
is defined by its ability to create original content that is
similar to the training data. These systems are based on

generative models, which are algorithms designed to identify
and reproduce patterns in data, allowing for the production of
creative results. In optimization theory, generative AI-based
techniques are essential instruments because they provide
creative solutions for the complexities of high-dimensional
and challenging optimization issues. Neural network-based
Variational Autoencoders (VAEs) andGenerativeAdversarial
Networks (GANs) exhibit impressive potential for examining
various solution spaces and identifying non-linear patterns in
data. The use of generative models is noteworthy in the field
of combinatorial optimization, where GANs show promise in
producing excellent solutions for challenging combinatorial
problems. Generative AI is important because it can improve
global optimization by minimising the chance of getting
stuck in local optima through effective navigation of intricate
terrain. This capacity satisfies the requirements of a number
of fields, including supply chain management and logistics,
where traditional approaches might have trouble locating
global optima. Furthermore, hybrid methods that combine
the best features of both paradigms for more reliable and
adaptable optimization processes are produced by fusing
generative AI with conventional optimization techniques.
Recent studies have shown how generative AI improves
sample efficiency, resilience, and flexibility in optimization,
highlighting the technology’s significance in developing the
area.

1) MAIN CATEGORIES OF METHODOLOGIES WITHIN
GENERATIVE AI OPTIMIZATION

• Generative AI applied to surrogate optimization
• Generative AI as sample generation for optimization
1) Generative AI methods for surrogate creation - (Build-

ing the surrogate model): This presents a novel
approach to the optimization of difficult-to-manage
complicated simulations, particularly those that exhibit
random or uncertain behaviour. In domains such
as engineering and physics, these simulations are
frequently difficult to comprehend or control. This
approach makes use of sophisticated mathematical
models that are able to imitate those simulations
in tiny, controllable regions through learning. The
researchers assert that by doing this, they can more
effectively determine the ideal simulation parameters,
even in situations when other widely used approaches
falter. In this section, we discuss the application
of generative-based methods in the creation of the
black-box function of such sophisticated mathemat-
ical models or surrogates. The article [75] offers a
novel strategy for overcoming the excessive variance
observed in score function gradient estimators while
utilising the benefits of gradient-based optimization.
By parameterizing the surrogate model with pertinent
simulator parameters, this approach uses deep gen-
erative models as differentiable surrogate models to
approximate non-differentiable simulators. This allows
for the approximation of the stochastic behaviour of
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FIGURE 4. Taxonomy for model predictive control optimization methods.

FIGURE 5. Taxonomy for generative AI optimization methods.

the simulator and allows for direct gradient-based
optimization of an objective. The proposed tech-
nique, called local generative surrogate optimization
(L-GSO), makes strategic use of successive local
neighbourhoods of the parameter space at each step
of parameter optimization. This is especially useful
in dealing with high-dimensional parameter spaces,
where training surrogates over the entire parameter
space can be computationally expensive if follows
the work flow of the generative adversarial networks
to conduct the optimization process. The article [76]
explains a novel regression model based on beta-
variational Autoencoders (betaVAEs) that optimises
oilfield development decisions. optimization studies
based on reservoir modelling are commonly used
to guide decisions in the oilfield development envi-
ronment. The computing cost of these simulations,
which compare various production scenarios and well

controls, is high. Surrogate models are frequently
employed to expedite this research. Even if they work
well, traditional deep-learning models for creating sur-
rogates have drawbacks, such as an inability to quantify
prediction uncertainty and a lack of interpretability.
These problems are addressed by the suggested beta-
VAE-based regression model. Regression is performed
using the interpreted, factorised representation of
choice variables in a latent space that is provided
by Beta-VAE. The model includes probabilistic dense
layers that help with approximate Bayesian inference
and measure prediction uncertainty.

2) Generative AImethods for surrogate creation - (Sample
generation for pretraining of the model): Apart from
the objective function creation for the underlying
surrogate, generative AI-based methods can also aid
in synthetic data point or sample generation for the
creation of the surrogate process. In simple terms, when
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a lack of original samples affects the pre-training phase
of the surrogate machine learning model, generative
AI-based methods can be used to generate synthetic
samples for pretraining purposes. In this section,
we discuss such endeavors of generative AI-based
methods. An empirical study [77] on the applicability
of key dimensionality reduction methods for building
surrogate models in high-dimensional optimization
situations is included in the text. The goal of the
research is to construct surrogate models more effec-
tively by condensing intricate, high dimensional design
spaces into compact, low-dimensional representations.
This work investigates four methods for reducing
dimensionality: Principal Component Analysis (PCA),
Autoencoders (AEs), Kernel Principal Component
Analysis (Kernel PCA), and Variational Autoencoders
(VAEs). The quality of the low-dimensional surrogate
models generated by these methods is assessed, and
they are tested in various situations with varying
dimensionalities, benchmark problems from continu-
ous optimization, and surrogate modelling methods
such as Kriging and Polynomials. The study’s findings
demonstrate the efficacy of PCA and autoencoders in
terms of global optimality and modelling accuracy,
respectively. Due to their historical importance in
machine learning applications such as feature learning,
dimensionality reduction, data compression, and data
visualisation, PCA and AEs were selected. In order
to create effective surrogate models, kernel PCA,
a non-linear extension of PCA, and VAEs, non-linear
stochastic encoding of the data space, were included.
With the support of a thorough quality evaluation
of the associated low-dimensional surrogate models
(LDSMs) across a wide range of test scenarios, the
paper attempts to offer a fresh viewpoint on the
suitability of these dimensionality reduction techniques
(DRTs) in surrogate-assisted optimization (SAO).

3) Generative AI methods for sample generation: Gen-
erative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs) are two examples of generative
AI techniques that are skilled in producing artificial
data samples for surrogate optimization. Real data
is used to train these models so they may discover
the underlying trends. After being taught, they can
produce new, artificial samples that replicate the
dataset’s statistical characteristics. These artificial
samples are essential for surrogate optimization. They
are employed in the creation of a surrogate model that
mimics a sophisticated, frequently computationally
demanding simulation. Because it uses readily created
synthetic data rather than constantly executing the
actual simulation, this model training is significantly
more efficient. After that, the surrogate model aids
in optimization by offering fast estimates for a range
of input parameters and assisting in the discovery of
the best configurations. To ensure the accuracy of

the surrogate, genuine data from the actual simulation
is periodically used to modify this process. For
this reason, surrogate optimization becomes much
more efficient thanks to generative AI techniques,
which allow for quick and affordable exploration and
optimization of complicated systems without requiring
a lot of simulation or real-world testing. In this section,
we discuss the application of a generative AI based
method for the synthetic sample generation process
to aid the surrogate validation and training phases.
It can be seen from the literature that this sample
generation can be performed in two main ways, first
by latent space transformation and second, distribution-
based. In the coming subsections, we discuss these
two approaches for sample generation for the surrogate
optimization process. The article [78] talks about
the use of Variational Autoencoders (VAE) in offline
model-based optimization, especially in situations
where the purpose is to maximise a black-box objective
function with a static dataset of designs and the scores
that go along with them. Numerous fields, including
material design, robotics, DNA sequencing, and protein
engineering, frequently encounter this optimization
dilemma. The traditional method uses the static dataset
to train a Deep Neural Network (DNN) as a proxy
function. Gradient ascent is then applied to the current
designs to find possibly high-scoring ones. Unfor-
tunately, the out-of-distribution problem frequently
arises with this approach, which results in inaccurate
design predictions. BiDirectional learning for offline
Infinite-width model-based optimization (BDI) is the
suggested remedy to this problem. The two mappings
that make up the BDI are the forward mapping, which
predicts scores for high-scoring designs using the
static dataset, and the reverse mapping, which predicts
scores for the static dataset using the high-scoring
designs. In contrast to earlier research that frequently
disregarded backward mapping, BDI recognises its
importance in enhancing the high-scoring designs
by extracting additional information from the static
dataset, thus reducing the out-of-distribution issue. The
article highlights that there is a considerable decline in
design quality for finite-width DNN models because
the loss function of the backwardmapping is intractable
and only has an approximate shape. In order to get
over this restriction, an infinite-width DNN model is
used, and a closed-form loss for more precise design
updates is produced by using the associated neural
tangent kernel. This decision is meant to improve the
optimization process’s accuracy in offline model-based
settings.

4) Generative AI methods for sample generation - (based
on latent space transformation): By altering the latent
space, generative AI techniques such as variational
autoencoders (VAEs) and generative adversarial net-
works (GANs) can be used in surrogate optimization
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to produce synthetic examples. The most important
aspects of the data are captured in a compressed, lower-
dimensional form known as the latent space. These
generative models acquire the ability to map actual
data to and from the latent space through training on
real data. The generative model explores this latent
space to generate new data samples for surrogate
optimization. In order to create new, synthetic samples,
this is accomplished by slightly altering points in the
latent space and then converting these points back into
the high-dimensional space of the original data. These
samples are unique in their details, yet they preserve
the original dataset’s statistical characteristics. These
artificial samples are then used to train the surrogate
model, which enables an effective approximation of
a resource intensive, complex process. Generative
AI techniques provide more effective and efficient
optimization procedures by generating diverse and
informative samples for surrogate models through the
exploration and modification of the latent space. With
the use of latent space manipulation, this method
produces a large range of synthetic samples that can
greatly increase the surrogate model’s capacity for
learning and generalisation, which in turn improves
the optimization process. In this section, we discuss
the application of generative-based methods for latent
space transformation-based sample generation for
surrogate optimization. This paper [79] presents a
generative solution to a classic mechanical materi-
als design problem by integrating Long Short-Term
Memory (LSTM) neural networks with Variational
Autoencoders (VAE). Virtual Autoencoders (VAEs)
are known for their ability to extract low-dimensional
representations from large and complicated datasets,
especially for generative applications like rebuilding
complex data like images. On the other hand, LSTM
neural networks are quite good at figuring out logical
trajectory correlations inside datasets. The developers
of this combination method, known as VAELSTM,
concentrate on a cantilever design-related compliance
optimization challenge. An LSTM is used to learn
trajectories inside this latent space that correlate to
the optimization process after a VAE is used to
encode cantilever structures into a 2D latent space. The
cantilever design space can be clearly shown thanks to
the final model, which also makes it possible to create
new, incredibly low-density ideas outside of the initial
dataset. Additionally, the method makes it easier to
extract the best cantilever structures that are modelled
after natural phenomena. Crucially, 3D printing can
be used to produce the created designs, offering a
quick turnaround time from concept to prototype.
According to the article, this technique can be used
for other image-based datasets that record changes
due to various circumstances. Intelligent design and
manufacturing of material structure difficulties are

noted as areas where the interpretability of complicated
behaviour through representations in a simplified
space is recognised as having substantial potential
applications.

5) Generative AI methods for sample generation - (Dis-
tribution based): Generative AI-based models can
comprehend how data is distributed across features
since they are initially trained to grasp the underlying
probability distribution of a specific dataset. Following
this learning phase, the model’s sample points from this
learnt distribution to create fresh, synthetic samples,
thereby producing data that is a statistical mirror of
the training set. The diverse and representative samples
produced by this procedure are essential for developing
a reliable and accurate surrogate model. In this
section, we discuss the application of Generative AI
methods for distribution-based learning for synthetic
data generation for the surrogate optimization process.
In data-driven multi-objective optimization problems
(DD-MOPs), where the amount of data accessible from
actual engineering trials is constrained by time and
expense, the article [80] presents a novel solution to
these difficulties. Traditionally, using trained surrogate
models, evolutionary algorithms indirectly solve DD-
MOPs. Unfortunately, the accuracy of the estimated
Pareto front that is obtained frequently deteriorates
significantly due to a lack of practical data. The study
presents two cutting-edge tactics that a Generative
Adversarial Network (GAN) uses to combat this.
The first technique, called critical fitness, presents a
new critical fitness that is made up of the prediction
value of the surrogate model and the critical score
obtained from the discriminator of the GAN. The
second tactic is data augmentation, in which fresh
samples are produced by the GAN to enhance the
surrogate model’s training. Through the integration of
both techniques, the GAN fulfils the dual function of
augmenting data and improving critical fitness, hence
effectively overcoming the issues associated with DD-
MOPs. In this article [81], a unique way to use Gen-
erative Adversarial Networks (GANs) to improve the
performance of model-based evolutionary algorithms
is presented. To operate at their best, traditional model-
based evolutionary algorithms mostly depend on the
quality of the training set. But when the problem
gets bigger, the curse of dimensionality becomes a
concern, and performance deteriorates quickly. The
suggested approach makes use of a multiobjective
evolutionary algorithm powered by GANs to solve
this problem. To train the GANs, parent solutions
are first divided into real and false samples in each
generation. Then, using the trained GANs, progeny
solutions are sampled. Because GANs are powerful
generative algorithms, the suggested technique can
produce plausible offspring solutions even in high-
dimensional decision spaces with a small amount
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of training data. Experiments on ten benchmark
issues with up to 200 choice variables demonstrate
the algorithm’s usefulness and indicate that it can
overcome the problems brought on by the curse of
dimensionality while still exhibiting increased perfor-
mance. The article [82] presents a brand-new image-
based route planning algorithm that aims to overcome
the drawbacks of the conventional sampling-based
approaches used in robot path planning. This method
makes use of a generative adversarial network (GAN),
in contrast to uniform sampling strategies that explore
the state space without complex geometric modelling
of the configuration space. Without any further pre-
processing, the environment map–represented as an
Red Green Blue (RGB) image is fed into the GAN.
The result is also an RGB image with a segmented
promising section highlighted that probably contains
a workable path. This promising region addresses
the issues of delayed convergence to the optimal
solution and initial solution quality by acting as a
heuristic for attaining non-uniform sampling in the path
planner. The suggested method’s higher performance
in terms of initial solution quality and convergence
speed as compared to conventional approaches is
validated by simulation experiments. Notably, the
approach demonstrates strong performance in set-
tings that differ markedly from the training context,
underscoring its adaptability and versatility. Fig. 5
shows a taxonomy of model generative AI optimization
techniques.

2) DISCUSSION ON GENERATIVE AI APPLIED TO
OPTIMIZATION
There are various benefits of using generative AI-based tech-
niques for creating surrogates. Synthetic sample generation
is fast and efficient, allowing for a quick process of creating
surrogates and minimising the need for expensive experi-
ments or resource-intensive simulations. This affordability is
especially useful in fields where it may not be feasible to
conduct real-world testing. Because generative models are
naturally able to identify a wide range of patterns in the
training data, the resulting surrogate model is guaranteed to
generalise effectively over a wide range of scenarios and
input changes. Furthermore, these techniques provide a useful
approximation for complicated systems that are difficult to
represent explicitly. Because the procedure is iterative, the
surrogate model can be continuously improved, increasing
its relevance and accuracy over time. In addition to enabling
focused parameter space exploration that supports effective
optimization, generative AI offers a controlled environment
for the creation of a variety of synthetic samples in situations
involving restrictions or control challenges. Finally, the
capacity of surrogate models trained on synthetic data to be
transferred to other contexts improves their versatility, which
makes generative AI a powerful tool for optimizing a range of
intricate systems and procedures. Utilising strategies such as

variational autoencoders (VAEs) and generative adversarial
networks (GANs), these approaches enable the creation of
synthetic samples by exploring the latent space, a lower-
dimensional representation of the data that captures important
properties. This method offers a sophisticated investigation
of the underlying data distribution by adjusting points in the
latent space, which makes it easier to create representative
and varied samples. The capacity to produce samples in the
latent space offers a way to methodically investigate various
configurations, enabling the generation of more focused
and educational data. Additionally, it provides a productive
means of enhancing datasets for surrogate model training,
especially in situationswhere real-world data is scarce. Latent
space transformation’s versatility makes it possible to create
fresh, insightful samples, which helps in the development
of surrogate models that can faithfully represent intricate
relationships found in the data. Using generative AI in
latent space transformation improves synthetic sample cre-
ation’s overall effectiveness, diversity, and informativeness,
which helps with surrogate model training and optimization
procedures. Although using latent space transformation to
generate samples for surrogate optimization via generative
AI presents significant benefits, there are still several
obstacles to overcome. One challenge is the intricate nature
of generative models, such as GANs and VAEs, which
require careful tuning to appropriately represent the complex
data distribution because of their complexity and training
requirements. It is still difficult to guarantee that produced
samples are diverse and accurately reflect the features of
real data; problems such as mode collapse in GANs result
in surrogate models that are biased. Interpretability and
explainability of the models are limited by the black-box
character of some generative techniques. Two persistent
issues are avoiding over-reliance on synthetic samples and
generalisation to unexpected events. Furthermore, the ethical
issues surrounding the unintentional replication of biases in
generated data highlight the need for ongoing research to
improve the robustness and moral application of generative
AI in surrogate optimization. The computational resources
required for training complex generative models can also be
a limiting factor.

III. APPLICATIONS OF THE FOUR OPTIMIZATION
CATEGORIES IN ITS
In Section II we lay the theoretical foundation and catego-
rization of various AI optimization techniques, to build on
this foundation by demonstrating practical applications of
these techniques in transportation management, we introduce
section III. In this section, we essentially provide real-
world applications and examples of the concepts and
methods introduced in section II, making the transition
from theory to practice. Therefore, this section provides a
detailed summary of each reviewed research article across
the four categories explored in transportation. This can be
seen in Table 1 - 4. For each article, we explored the
research objectives, the optimization methods employed,
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TABLE 1. Summary of model based applications in ITS.

the results obtained, the identified research gaps, or the
suggested directions for future work. Table 5 encapsu-
lates the core aspects of discussions and future trends in
model-based, MPC, Generative AI, and RL in transport
optimization.

After the execution of a thorough review of the literature
about the above-discussed four classes of AI-based optimiza-
tion techniques we have found that all applied intelligent
transport systems problems can be grouped into five major
classes of problems namely, Congestion and Traffic Capacity
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TABLE 2. Summary of model predictive control applications in ITS.

based, Traffic Scheduling based, Transport Safety based,
Vehicle Dynamics Based and Traffic State Estimation &
Prediction based. Fig. 6 shows the grouping of individual
application directions in intelligent transport systems to
these five classes of problems. Fig. 7 shows the mapping

between these five classes of problems and the four AI-
based optimization methods that we have considered for this
review. From this figure, one can comprehend that model-
based optimization is being used in congestion and traffic
capacity-based problems and a few instances for transport
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TABLE 3. Summary of generative AI applications in ITS.

safety-based problems.MPC can be seenmajorly beings used
in transport safety and vehicle dynamics based problems.
Generative AI based methods are mostly used in vehicle
dynamics and traffic state prediction based problems. Lastly,
Traffic scheduling and vehicle dynamics based problems
are among the major class of problems that uses RL based
solution.

IV. SCALABILITY AND COMPUTATIONAL TRADE-OFFS
FOR AI OPTIMIZATION METHODS
There are a number of particular difficulties with using AI
optimization techniques–MBO, RL, MPC, and Generative
AI–to bigger transportation networks. To enable real-time,
network-wide application, each method must handle the

computational trade-offs between responsiveness, accuracy,
and efficiency. The application of MBO to large-scale
networks presents substantial problems since realistic sur-
rogate models that simulate complicated scenarios without
imposing an undue processing strain are required. Building
accurate surrogatemodels is more costly and time-consuming
as networks get bigger, particularly in high-dimensional
environments with complex variable dependencies. Single-
fidelity or even multi-fidelity surrogate models may be
used in traditional MBO techniques to strike a compromise
between model accuracy and computational expense. When
scaled, these surrogates necessitate significant tweaking and
frequent re-calibration, which raises processing requirements
and raises the possibility of decreased model fidelity.
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TABLE 4. Summary of reinforcement learning applications in ITS.

TABLE 5. Discussions and future trends in AI transport optimization categories in ITS.

MBO frequently uses ensemble surrogate models to
address these issues, combining several surrogate algorithms
to manage the complexity and variety of a wider network.
Accuracy and computing efficiency are traded off in this

integration, with more accuracy frequently resulting in the
need for more computer power. This can be lessened by
adaptive techniques like ensemble learning and parameter
tweaking, which give computationally effective surrogates

VOLUME 12, 2024 173999



B. I. Afolayan et al.: Emerging Trends in Machine Learning Assisted Optimization Techniques

FIGURE 6. Grouping of common ITS problems.

FIGURE 7. Mapping between common ITS problem groups and applied
optimization solution class.

priority in real-time processes while maintaining accuracy
at crucial decision points. Nevertheless, this introduces
additional levels of complexity, necessitating effective model
selection to provide reliable scalability.

Because of the expanded state-action space and the
requirement for thorough exploration to identify the best
policies, extending RL to bigger transportation networks
presents difficulties. The computational requirements for
training agents increase exponentially with the size of the
network, which indicates more states and possible actions.
Policy convergence may be delayed by RL’s reliance on trial-
and-error learning techniques, especially in larger settings

where agent interaction or coordinationmay be required (e.g.,
in multi-agent RL setups).

Using hierarchical or multi-agent RL frameworks is one
method of addressing these computational trade-offs in RL.
Large issues are divided into smaller, more manageable sub-
tasks via hierarchical reinforcement learning, each of which
is subject to a lower-level policy. This lessens the computing
effort by enabling a high-level policy to effectively direct
sub-policies. Moreover, RL algorithms can be scaled with
the aid of function approximators such as neural networks
in Deep RL or off-policy learning, where pre-gathered data
can speed up training. Nevertheless, these methods may
have drawbacks: subtasks may not always match real-world
situations exactly, and neural networks may be hard to
understand, whichmakes it hard to guarantee optimal policies
in big networks.

In order to respond swiftly to shifting network conditions,
MPC,which is frequently employed in transportation systems
for real-time decision-making, needs dynamic optimization
over brief time horizons. As the size of the optimization
problem increases, scaling MPC to bigger networks presents
difficulties that make it harder to satisfy real-time require-
ments. For instance, the computational complexity increases
with the number of controlled vehicles or junctions, making it
more difficult for MPC to analyze in real time. High-fidelity
updates are also less feasible due to the average model-update
frequency in bigger networks, which might put a burden on
system resources.

MPC frequently breaks down bigger networks into smaller,
independently controllable segments or uses approximation
techniques like reduced-order models in larger applications.
These methods introduce trade-offs between local precision
and global network performance, but they can control com-
putational costs. By coordinating controllers across smaller
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subsystems, a distributed MPC arrangement can balance
computing efficiency; nevertheless, this can be difficult to
implement and necessitates cooperation to avoid suboptimal
global performance.

For sample generation and surrogate model training in
complex networks, generative AI techniques–specifically,
Generative Adversarial Networks (GANs) and Variational
Autoencoders (VAEs)–have become more and more popular.
It can be difficult to scale generative models to larger
transportation networks since it takes a lot of data to
properly reflect the intricacies of many scenarios. For
example, it takes a lot of computing power to train
GANs, especially as the models and data dimensionality
increase.

By providing flexible sampling and data augmentation
capabilities, generative models help to mitigate computa-
tional trade-offs. This allows for the creation of synthetic data
to improve simulation variety or pre-train surrogate models.
But doing so comes at the expense of more processing power,
particularly when dealing with high-dimensional issues like
traffic forecast for a whole metropolis. Models can be
trained on lower-resolution data to maximize efficiency,
sacrificing precision in favor of scalability. By generaliz-
ing learned features across tasks, latent space exploration
and transfer learning approaches also aid in minimizing
the need for intensive retraining in every new situation.
However, controlling model generalization and convergence
in big networks is still a difficult part of generative
AI scaling.

V. CHALLENGES IN REAL-WORLD APPLICATIONS OF AI
OPTIMIZATION TECHNIQUES IN ITS
Because urban transportation settings are complex and
dynamic, there are significant problems when using AI
optimization models to real-world ITS. Although obtaining
this degree of model accuracy is computationally demanding
and frequently limited by insufficient real-time data, Model-
Based Optimization necessitates highly flexible, high-fidelity
surrogate models that can manage enormous, complex
datasets. For real-time applications in live traffic systems,
where agents must learn without creating interruptions,
RL can be challenging because to its large state-action space,
sluggish convergence, and sample inefficiency. Although
MPC has benefits for short-term optimization, it has scala-
bility issues in big metropolitan networks, particularly when
erratic occurrences like accidents or severe weather affect
real-time accuracy. Although generative AI holds promise
for scenario creation and data augmentation, it requires
large datasets to correctly represent the complexity of the
real world and, if not trained properly, may produce biased
or inaccurate data. Furthermore, rigorous synchronization
is necessary when combining generative outputs with real
decision-makingmodels in ITS systems to guarantee that they
reflect the state of affairs at the moment. Hybrid techniques
are crucial for creating reliable and scalable ITS solutions
since the effective use of each technique depends on striking a

balance between computational efficiency, data reliance, and
adaptability.

VI. SCALABILITY AND EFFICIENCY METRICS FOR
ASSESSING THE EFFECTIVENESS OF OPTIMIZATION
TECHNIQUES IN ITS
Certain criteria are necessary to evaluate how well optimiza-
tion strategies in ITS function under growing network sizes
and computing demands in order to gauge their scalability
and efficiency. Computation time, solution correctness, and
resource utilization (such as memory and CPU usage) are
frequently the main determinants of efficiency. The rate of
convergence to an optimal or nearly optimal solution can
also be used to assess efficiency; this is especially important
for methods like MBO and MPC, where making decisions
quickly is crucial.

Usually, scalability is evaluated by tracking resource usage
or performance deterioration as network size or problem
complexity increases. For instance, in RL, decision-making
throughput and latency are crucial because they show
how well an algorithm can manage larger, more intricate
state-action spaces without sacrificing efficiency. Metrics
like synthetic data quality and realism in different traffic
situations are crucial for generative AI in order to verify that
model performance holds upwell when the dataset expands or
adapts to new circumstances. In this regard, generalizability
measurements that demonstrate how well models can adjust
to increasingly complicated or unknown traffic patterns also
frequently reflect scalability.

VII. CONCLUSION
In this review, we have explored the role of artificial
Intelligence in intelligent transport systems. The catego-
rization of AI optimization techniques into four distinct
groups, MBO, RL, MPC, and Generative AI, provides a
structured framework to understand and compare the diverse
methodologies employed in ITS. This review synthesizes
recent advancements and identifies emerging trends within
these categories, revealing the innovative approaches and
technological strides made over the past five years. Fur-
thermore, by synthesizing current research and identifying
common approaches and research gaps, this paper provides
a valuable road map for future advancements in AI-driven
transportation optimization. This resource facilitates a deeper
understanding of how different AI techniques can be applied
to specific transportation problems, offering insights into
the motivations behind various approaches, the solutions
proposed, and their respective outcomes and research gaps.

In this article we have addressed the three research
questions by categorizing AI techniques–MBO, RL, MPC,
and Generative AI–and analyzing their effectiveness in
optimizing ITS. For Research Question 1 on identifying
the most effective techniques, we have evaluated each
category’s strengths, detailing how MBO excels in surrogate
modeling for complex traffic environments, RL adapts
through interaction-driven learning for dynamic control,
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MPC handles real-time short-horizon decision-making in
vehicle and safety applications, and Generative AI enhances
data-driven optimizations by generating realistic synthetic
data. In answering Research Question 2 on efficiency and
scalability, we have explored how these techniques balance
computational trade-offs by measuring efficiency through
metrics like computation time, resource usage, and scala-
bility in network expansion. For instance, MBO’s surrogate
model accuracy, RL’s sample efficiency, MPC’s real-time
performance, and Generative AI’s data adaptability reflect
each method’s capacity to scale. Finally, Research Question
3 is addressed by identifying gaps and future research
directions, such as improving RL’s sample efficiency,
enhancing MBO’s model adaptability, resolving MPC’s
scalability constraints, and addressing Generative AI’s data
dependency, thus highlighting areas where further innovation
is essential. This structured approach not only evaluates each
technique’s suitability for specific ITS applications but also
establishes a roadmap for overcoming limitations, ensuring
the development of robust, scalable solutions for complex
transportation challenges.
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